מרצה/ים:
ד"ר דורון פודר
תיאור:
syllabus:
- Classification of surfaces
- The arc complex
- Surfaces and commutator length
- Random Gaussian matrices and enumeration of graphs on surfaces
- Mapping Class Groups
- Random Unitary Matrices and Surfaces
סיכומים:
Sunday, March 4, 2018
נושאי השיעור:
- Introduction
- Definition of a surface
- Connected sum
- Euler Characteristics of surfaces
- Orientability
Monday, March 5, 2018
נושאי השיעור:
Classification of surfaces:
- Dehn - Heegard theorem:
- steps of proof:
- Reduction to a single equvalence class of vertices
- crosscap normalization (lecture 3)
- Handle normalization (lecture 3)
- from crosscaps and handles to only crosscaps (lecture 3)
- steps of proof:
- Canonical representation of surfaces
- Seifert - Van Kampen theorem
- Triangulation, Rado theorem
Sunday, March 11, 2018
נושאי השיעור:
Classification of surfaces:
- steps 2,3,4 of Dehn - Heegard's theorem
- classification of connected compact surfaces with punctures
Monday, March 12, 2018
נושאי השיעור:
The arc complex:
- definitions: arcs, essential arcs, arc systems, ambient isotopy, arc complex
- examples of arc complices
- Horer's theorem + corollary
Sunday, March 18, 2018
נושאי השיעור:
The arc complex:
- definitons: simplicial complex, star, link
- steps in proof of Harer's theorem
Monday, March 19, 2018
נושאי השיעור:
The arc complex:
- proof of Harer's theorem
Surffaces and commutator length:
- definition of commutator length