Polynomial Hierarchy collapses! Theorem: If $\Pi_2 = \Sigma_2$ then $\Sigma_3 \subset \Sigma_2$

• notations:

- " $\Sigma_2 - formula$ " :=formula of type $\exists x \forall y \phi(x, y)$

- " $\Pi_2 - formula$ " :=formula of type $\forall x \exists y \phi(x, y)$

- " $\Sigma_3 - formula$ " :=formula of type $\exists x \forall y \exists z \phi(x, y, z)$

given $L \in \Sigma_3$, we will show the existence of a poly-time machine,

that for each $x \in L$ produces a formula in the form of $\exists x \forall y \phi(x, y)$ such that this formula is valid iff $x \in L$.

Proof:

• for each $x \in L$, we can compute a formula $\exists x \forall y \exists z \phi'(x, y, z)$ such that it is valid iff $x \in L$.

this can be computed using turing machine denoted as M.

- then, denote the formula G(y, z) = ∀y∃zφ'(x, y, z) where x is free.
 now, this is not a "Σ₂ formula", because we have a free variable x here.
- so, we will create new turing machine M_0 , that given G(y, z) formula, and assignment for x,

computes new logically - equivalent formula, (where x is with that assignment), with **no** x as a free variable in it.

it will just do some replacments.

for example, if x = 1, and $G(y, z) = (y \lor z) \land (x \lor y)$, then $M_0(G(y, z), x) = (y \lor z)$

this will be turing machine M_0 .

- then, for each assignment for x we can compute M₀ on G(y, z) and x, and get a new "Π₂ formula".
 call it M₀(G(y, z), x).
- then we can evaluate " $\Sigma_2 formula$ " from it, in polynomial time, using turing machine M_1 .

that is because $\Pi_2 = \Sigma_2$, thus $M_0(G(y, z), x) \in \Sigma_2$.

BUT, it is not enough, we need to have this turing machine M_1 one for all formulas of type " $\Pi_2 - formula$ ".

- that is because, the formula $M_0(G(y, z), x)$ varies and depends on x. so we want to use the same turing-machine for all x.

but, we have that, because if $\Pi_2 = \Sigma_2$, then we have a **one** reduction poly-time computable, from **any** " $\Pi_2 - formula$ " to an appropriate " $\Sigma_2 - formula$ ".

This reduction function will be called M_1 .

• thus, $M_1(M_0(G(y,z),x))$ is in the type of $\exists x' \forall y' \phi(x',y')$.

we will take only the body of this formula: $\phi(x', y')$,

this can be surely also computed at a poly-time.

• note also that $|x'|, |y'| \le |\{0, 1\}^{p(|x|)}|$, where x is our original input, and p is some polynom.

because all our computations are polynomial-time of the input.

we can do that and replace all occurences of x', y' with x'', y'' for example, it does not matter.

• so, we will call the finally evaluted formula $\phi(x', y')$.

this formula depends on x thus we can not write that the formula will be $\exists x.M_1(M_0(G(y,z),x))$ and so it will be $\exists x.\exists x' \forall y' \phi(x',y')$ and thats it,

because it is not true! the formula ϕ **varies** with each assignment on x.

• but, what we can do is that:

we will say that, $M_1 \circ M_0$ will compute only the body, and we will write in the beginnig of the formula: $\exists x \in \{0,1\}^{p(|x|)} \exists x' \in \{0,1\}^{p(|x|)} \forall y' \in \{0,1\}^{p(|x|)}$.

then, the formula it-self, will be the Cook - Levin computation for x as an input, applying M_0 on x and G(y, z), then applying on the output M_1 , creating $\phi(x', y')$, then M_2 that computes the logical value of $\phi(x', y')$, where x', y' as its free variables, inputs, and checking actually if M_2 output was true. so, we actually write the formula: $M_2(M_1(M_0(G(y, z), x)), x', y') =$ true

• then the final formula is:

 $\exists x \in \{0,1\}^{p(|x|)} \exists x' \in \{0,1\}^{p(|x|)} \forall y' \in \{0,1\}^{p(|x|)} M_2(M_1(M_0(G(y,z),x)), x', y') = true$

note that this formula is not depend on anything but the original formula which is: $\exists x \forall y \exists z \phi'(x, y, z)$.

• the final formula is $\Sigma_2 - formula$.