Introduction to Error Correcting Codes

Amir Shpilka
Arazim (¢

February 4, 2016

In this lesson we will be continuing List-decoding algorithms for RS codes and show more bounds for
codes. Continuing from last lesson, where we showed that there are at most n? polynomials with a degree
< k which agree with a word on at least vnk coordinates.

In this lesson we will show two algorithms, the first will find all of the RS codewords (polynomials with
a degree < k) which:

e Agree on at least 2v/nk coordinates of a given problem.
e Agree on at least v/2v/nk coordinates of a given problem.

Reminder 1. In the “toy problem” we found a polynomial Q (y,z) = y? + B (z)y + C () such that if f
has a degree < k which agrees with the word on more than 2k coordinates then y — f(z)|Q (z,y) (we will
show this by showing that @ (z, f(z)) = 0').

The idea for the algorithm today:
We will find a polynomial @ (x,y) such that if (y1,y2,...,y,) is the word we are trying to fix then

Q (ai, yi) = 0.
On the other hand if Enc (f) agrees with § on “many” coordinates then y — f(z)|Q (x,y)
We can think about @ as a polynomial with the variable y and over the field F (z) where

F(x) = {Z((g : a,b are polynomials and b # 0}

This is called the rational function field over z.

1 The first algorithm

Let Q (z,y) be a polynomial with a degree smaller or equal to d, on = and d, on y, meaning that if z* - y/
is in @) then ¢ < d;,j < d,. What we will want to occur is that

1. There are “enough” coefficients such that we can find a Q # 0 for which Vi.Q (e, y;) = 0. In
particular, we need that d, - d, > n since d, - d, is the number of monomials.

2. degQ (z, f (z)) < 2v/nk where deg f(z) < k,

deg (Q (v, f(2) ) < (do = 1) + (dy — 1) (k= 1)

Since d, — 1 is the highest power of x allowed, d, — 1 is the highest power of y allowed and k — 1
is the highest power in f(z). A good solution for this is d, = {\/ nkw and d, = {\/n/kw For such a

choice of d, and d,, there exists a @ (x,y) with a degree in x that is smaller than d, and a degree
over y that is smaller than d, such that Vi.Q (a;,y;) = 0.

!Since we already know that if p(y) is a polynomial and p(a) = 0 then y — a|p(y)



Given that, let f be a polynomial with a degree smaller than k such that there are at least 2v/nk a; such
that f (a;) = y;. For each point of agreement such as that we have 0 = Q (a;, %) = Q (s, f(c)) and in
particular, the polynomial @ (m, f (x)) vanishes on every agreement point of Enc (f) and (y1,92,...,Yn)

and in particular there are > 2v/nk zeros. Since deg (Q (ac,f(ac))) < 2v/nk we get that Q (a:,f(a:)) =
0=y— f(2)Q.

Thus, the algorithm is as follows:
1. We will find a @ # 0 such that

(a) Vi.Q(u,y:) =0
(b) The z degree is < {\/7%1

(c) The y degree is < {\/7%1

2. We will find all of the irreducible factors of @ of the form y — f(x), where deg f < k and for each
of there we will check if it agrees with the word on enough coordinates.

2 The second algorithm

In reality we could’ve allowed another monomial in A and still arrive at a polynomial for which @ («,y;) =
0 and deg (Q (a:, f (a:)))) < 2v/nk. In order for the second condition to occur we will require for every

monomial 2%y® that the number of agreements (marked as t) is larger than a + (k — 1) b.
Let us assume that we require ¢t agreements. The total number of monomials we can have is

#{(a,b):a+(k—l)-b<t}

when b = 0 we have ¢ such monomials, b = 1 we have t — (kK — 1) and thus for all b up to m we have
t —m (k — 1) such monomials where m < ¢%;. Calculating this sum:
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If we have this many monomials we will be able to solve the linear system of equations and since t > v/2nk
we have the required inequality. This gives us the following algorithm:
1. Find a Q (z,y) # 0 which only contains monomials of the type 2%® where a + (k —1)b < v/2nk.
2. Vi.Q (a4, y;) we will find all of the irreducible factors of @ of the type y — f(x) and save those which
agree on at least v/2nk coordinates.
3 Recap
Returning to what we did at the beginning of the course, we showed the following bounds:
e Singleton: for an [n, k,d] code we have that k+d<n+1and R+ <1
e Hamming: R+ H (g) <1

We also showed that there exist codes such thatR > 1 — H (J) meaning that the bound is tight.



3.1 Plotkin’s bound

We showed this in the second homework,

d
2k <92
< \‘Qd—nJ

1
And in the case of d = (% + 5) n. This gives us 28 < 2. (2;;2)” and 2F < O (%) We will now show

geometric proof for this.
Using an embedding of {0,1}" in R™ as follows, 0 — 1 and 1 — —1, e.g. {0,1}" — {1,—1}". Let vy, vo
be codewords (€ {£1}"), then (v;,v;) = n and for all i # j we have

<vi, vj> = # {Agreements} — # {Disagreements} < n — 2dist (vi, vj)

Corollary 1. A code that contains the words vi,vo, ..., vy, and the minimal distance is én gives a which
gives a set of m vectors for which (v;,v;) = n and for all i # j

<UZ‘,U]'> <n —2dist (vi,vj) <n-—2n

If we normalize v; = %, 6] = 1 and (v;,v;) < 1—26. If L + & = 6 then we have for all i # j,

<vi,vj> < —2¢

Claim 1. Let vy,..., v, € R™ such that ||v;|| = 1 and for all i # j we have <vi,vj> < 0 then m < 2n.
Proof. We will assume WLOG that v; = (0,0,...,0), § > 0 and we will represent each v; as v; =
(o, — —u; — —), then 0 = (vq,v;) — o - 6§ and

0>
(i uj) = (vi,vj) — i - <0

There can be at most one more vector v; such that v; = («;,0,...,0) (since if there were more then
we would have 3 vectors of the type (a,0,...,0) and two of them would have a positive inner product)
therefore it is sufficient to get m — 2 vectors with a dimension of n — 1 which hold the conditions. O
Corollary 2. Ifd =% in an [n,k,d] code then the number of words is smaller or equal to 2n.

Lemma 1. 1. Let a > 0 and we will assume that there are v, ..., vy € R™ with ||vs]| = 1, (vi,v;) <

-« thenmgl—l—%.
2. If y,v1,...,vm € R"™ such that (v;,y) >0 and for all i # j, (vi,v;) <0 then m < n.
proof of 1. Let u=v1 4+ -+ + vy
0 < (u,u) :Z<vi,vi>—|—z<vi,vj> <m-m(m-1)«
i i)
Thus, (m—1)a<landm <141 O

proof of 2. We will assume by contradiction that there are such vectors as mentioned previously with
m > n. In particular, there is a non trivial linear combination

m
E a;0; = 0
=0

And,

zZ = E a;0; = E ;04

it >0 1:0;<0



1. If 2 # 0 then (z,2) >0

0<(z,2) = < Z Ui, — Z Oéﬂfi> = Z a; - (=) - (vi,vj) <0

110, >0 ;<0 it >0
jIOéj <0

2. If2=0

0= (y,z2) = <y, Z awi> = Z a; (y,v;) >0

a; >0 a; >0
and again we have a contradiction.

O
Corollary 3. If d = (% + 6) n in an [n, k,d), code then the number of code words is smaller or equal to
1+ 5
Theorem 1 (Johnson bound). Every [n,k,d], code is also a (T -n — 1,n)-code for 7 =} <1 —V1- 25)

Proof. Let g be a vector and let vy, ...,v, be codewords in the ball with a radius of 7n — 1 around y.
According to what we have said, if we embed the problem in R™ we will get vectors vy, ..., v,, § for which
|7l = 1 and for all i we have |[v;|| = 1, for all i # j, (vi,v;) <1—26, (v, y) >1—27.

Let A > 0 be a parameter which we will define in the future. We will define v; = v; — Ay

<v§,v§~> = (i, v;) = A3 y) = A{vjy) + A2 < T—2X =2\ (1 —27) + \* = (1 — A2 =26 4+ 4\r
We will take A = 1 — 27 and we will get for that A,
<vg,v;> <472 254 4(1—27) -7 =47 — 477 — 26

For 7 = % (1 — V1= 25) the equation is equal to 0. In addition (v;,y) = (v;,y) —A>1—-271—A=0 O



