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In this lesson we will be continuing List-decoding algorithms for RS codes and show more bounds for
codes. Continuing from last lesson, where we showed that there are at most n2 polynomials with a degree
< k which agree with a word on at least

√
nk coordinates.

In this lesson we will show two algorithms, the first will find all of the RS codewords (polynomials with
a degree < k) which:

• Agree on at least 2
√
nk coordinates of a given problem.

• Agree on at least
√

2
√
nk coordinates of a given problem.

Reminder 1. In the “toy problem” we found a polynomial Q (y, x) = y2 + B (x) y + C (x) such that if f
has a degree < k which agrees with the word on more than 2k coordinates then y− f(x)|Q (x, y) (we will
show this by showing that Q

(
x, f(x)

)
= 01).

The idea for the algorithm today:
We will find a polynomial Q (x, y) such that if (y1, y2, . . . , yn) is the word we are trying to fix then
Q (αi, yi) = 0.
On the other hand if Enc (f) agrees with ȳ on “many” coordinates then y − f(x)|Q (x, y)
We can think about Q as a polynomial with the variable y and over the field F (x) where

F (x) =

{
a(x)

b(x)
: a, b are polynomials and b 6= 0

}
This is called the rational function field over x.

1 The first algorithm

Let Q (x, y) be a polynomial with a degree smaller or equal to dx on x and dy on y, meaning that if xi · yj
is in Q then i ≤ dx, j ≤ dy. What we will want to occur is that

1. There are “enough” coefficients such that we can find a Q 6≡ 0 for which ∀i.Q (αi, yi) = 0. In
particular, we need that dx · dy > n since dx · dy is the number of monomials.

2. degQ
(
x, f (x)

)
< 2
√
nk where deg f(x) < k,

deg
(
Q
(
x, f(x)

))
≤ (dx − 1) +

(
dy − 1

)
(k − 1)

Since dx − 1 is the highest power of x allowed, dy − 1 is the highest power of y allowed and k − 1

is the highest power in f(x). A good solution for this is dx =
⌈√

nk
⌉

and dy =
⌈√

n/k
⌉

For such a

choice of dx and dy there exists a Q (x, y) with a degree in x that is smaller than dx and a degree
over y that is smaller than dy such that ∀i.Q (αi, yi) = 0.

1Since we already know that if p(y) is a polynomial and p(α) = 0 then y − α|p(y)
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Given that, let f be a polynomial with a degree smaller than k such that there are at least 2
√
nk αi such

that f (αi) = yi. For each point of agreement such as that we have 0 = Q (αi, yi) = Q
(
αi, f(αi)

)
and in

particular, the polynomial Q
(
x, f(x)

)
vanishes on every agreement point of Enc (f) and (y1, y2, . . . , yn)

and in particular there are ≥ 2
√
nk zeros. Since deg

(
Q
(
x, f(x)

))
< 2
√
nk we get that Q

(
x, f(x)

)
≡

0⇒ y − f(x)|Q.
Thus, the algorithm is as follows:
1. We will find a Q 6= 0 such that

(a) ∀i.Q (αi, yi) = 0

(b) The x degree is <
⌈√

nk
⌉
.

(c) The y degree is <
⌈√

n/k
⌉
.

2. We will find all of the irreducible factors of Q of the form y − f(x), where deg f < k and for each
of there we will check if it agrees with the word on enough coordinates.

2 The second algorithm

In reality we could’ve allowed another monomial in A and still arrive at a polynomial for which Q (αi, yi) =

0 and deg
(
Q
(
x, f(x))

))
< 2
√
nk. In order for the second condition to occur we will require for every

monomial xayb that the number of agreements (marked as t) is larger than a+ (k − 1) b.
Let us assume that we require t agreements. The total number of monomials we can have is

#
{

(a, b) : a+ (k − 1) · b < t
}

when b = 0 we have t such monomials, b = 1 we have t − (k − 1) and thus for all b up to m we have
t−m (k − 1) such monomials where m < t

k−1 . Calculating this sum:

t · t

k − 1
− (k − 1)

t
k−1∑
i=0

i ≈ t2

k − 1
−����(k − 1)

1

2

t2

(k − 1)�2
=

1

2

t2

k − 1

?
> n

If we have this many monomials we will be able to solve the linear system of equations and since t ≥
√

2nk
we have the required inequality. This gives us the following algorithm:
1. Find a Q (x, y) 6≡ 0 which only contains monomials of the type xayb where a+ (k − 1) b <

√
2nk.

2. ∀i.Q (αi, yi) we will find all of the irreducible factors of Q of the type y− f(x) and save those which
agree on at least

√
2nk coordinates.

3 Recap

Returning to what we did at the beginning of the course, we showed the following bounds:

• Singleton: for an [n, k, d] code we have that k + d ≤ n+ 1 and R+ δ ≤ 1

• Hamming: R+H
(
δ
2

)
< 1

We also showed that there exist codes such thatR > 1−H (δ) meaning that the bound is tight.
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3.1 Plotkin’s bound

We showed this in the second homework,

2k < 2

⌊
d

2d− n

⌋
And in the case of d =

(
1
2 + ε

)
n. This gives us 2k < 2 · (

1
2
+ε)n

2εn and 2k < O
(
1
ε

)
. We will now show

geometric proof for this.
Using an embedding of {0, 1}n in Rn as follows, 0 → 1 and 1 → −1, e.g. {0, 1}n → {1,−1}n. Let v1, v2
be codewords (∈ {±1}n), then 〈vi, vi〉 = n and for all i 6= j we have〈

vi, vj
〉

= # {Agreements} −# {Disagreements} ≤ n− 2dist
(
vi, vj

)
Corollary 1. A code that contains the words v1, v2, . . . , vm and the minimal distance is δn gives a which
gives a set of m vectors for which 〈vi, vi〉 = n and for all i 6= j〈

vi, vj
〉
≤ n− 2dist

(
vi, vj

)
≤ n− 2δn

If we normalize v̂i = vi√
n
, ‖v̂i‖ = 1 and

〈
vi, vj

〉
≤ 1 − 2δ. If 1

2 + ε = δ then we have for all i 6= j,〈
vi, vj

〉
≤ −2ε

Claim 1. Let v1, . . . , vm ∈ Rn such that ‖vi‖ = 1 and for all i 6= j we have
〈
vi, vj

〉
≤ 0 then m ≤ 2n.

Proof. We will assume WLOG that v1 = (θ, 0, . . . , 0), θ > 0 and we will represent each vi as vi =
(αi,−− ui −−), then 0 = 〈v1, vi〉 − αi · θ and

〈
ui, uj

〉
=

0≥〈
vi, vj

〉
− αi · αj ≤ 0

There can be at most one more vector vi such that vi = (αi, 0, . . . , 0) (since if there were more then
we would have 3 vectors of the type (α, 0, . . . , 0) and two of them would have a positive inner product)
therefore it is sufficient to get m− 2 vectors with a dimension of n− 1 which hold the conditions.

Corollary 2. If d = n
2 in an [n, k, d] code then the number of words is smaller or equal to 2n.

Lemma 1. 1. Let α > 0 and we will assume that there are v1, . . . , vm ∈ Rm with ‖vi‖ = 1,
〈
vi, vj

〉
≤

−α then m ≤ 1 + 1
α .

2. If y, v1, . . . , vm ∈ Rn such that 〈vi, y〉 > 0 and for all i 6= j,
〈
vi, vj

〉
≤ 0 then m ≤ n.

proof of 1. Let u = v1 + · · ·+ vm

0 ≤ 〈u, u〉 =
∑
i

〈vi, vi〉+
∑
i 6=j

〈
vi, vj

〉
≤ m−m (m− 1)α

Thus, (m− 1)α ≤ 1 and m ≤ 1
α + 1

proof of 2. We will assume by contradiction that there are such vectors as mentioned previously with
m > n. In particular, there is a non trivial linear combination

m∑
i=0

αivi = ~0

And,

z =
∑
i:αi>0

αivi =
∑
i:αi<0

αivi
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1. If z 6= 0 then 〈z, z〉 > 0

0 < 〈z, z〉 =

〈 ∑
i:αi>0

αivi,−
∑
i:αi<0

αivi

〉
=
∑
i:αi>0

j:αj<0

αi ·
(
−αj

)
·
〈
vi, vj

〉
≤ 0

2. If z = ~0

0 = 〈y, z〉 =

〈
y,
∑
αi>0

αivi

〉
=
∑
αi>0

αi 〈y, vi〉 > 0

and again we have a contradiction.

Corollary 3. If d =
(
1
2 + ε

)
n in an [n, k, d]2 code then the number of code words is smaller or equal to

1 + 1
2ε

Theorem 1 (Johnson bound). Every [n, k, d]2 code is also a (τ · n− 1, n)-code for τ = 1
2

(
1−
√

1− 2δ
)

Proof. Let ȳ be a vector and let v1, . . . , vn be codewords in the ball with a radius of τn − 1 around y.
According to what we have said, if we embed the problem in Rn we will get vectors v1, . . . , vn, ȳ for which
‖ȳ‖ = 1 and for all i we have ‖vi‖ = 1, for all i 6= j,

〈
vi, vj

〉
≤ 1− 2δ, 〈vi, y〉 > 1− 2τ .

Let λ > 0 be a parameter which we will define in the future. We will define v′i = vi − λy〈
v′i, v

′
j

〉
=
〈
vi, vj

〉
− λ 〈vi, y〉 − λ

〈
vj , y

〉
+ λ2 ≤ 1− 2λ− 2λ (1− 2τ) + λ2 = (1− λ)2 − 2δ + 4λτ

We will take λ = 1− 2τ and we will get for that λ,〈
v′i, v

′
j

〉
≤ 4τ2 − 2δ + 4 (1− 2τ) · τ = 4τ − 4τ2 − 2δ

For τ = 1
2

(
1−
√

1− 2δ
)

the equation is equal to 0. In addition 〈vi, y〉 = 〈vi, y〉 − λ > 1− 2τ − λ = 0
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