Introduction to Error Correcting Codes

Amir Shpilka
Arazim (¢

February 4, 2016

1 Concatenated RS-code

Reminder 1. An RS code is a [nq, kl,dl]q:21 where k1 +di = n1.

Code [e2,1, d2],

An RSo code is [ng - ng, k - 1, dy - da], since (Fg)l = [Fy. We will show an algorithm that corrects code with
a number of errors that is e < %.

As a warm-up: fixing errors with e < % errors in a time of poly (nl, 2l n2> (for ¢ = O (n1) we have
poly(n1)).
The algorithm:

1. We will fix each one of the n; blocks, as good as possible (Brute-force).

2. Now, we will fix the output of that using W-B for RS and arrive at the code word that we sent.

Analysis: If the block is “small” meaning that there were at most %2 errors, then step 1 would have

fixed it. Therefore, since there were less than %1 . d—; mistakes, the number of blocks where we will have a

mistake is smaller than %1
And now, the W-B algorithm fixes this without any errors.

1.1 Some markings

T = (21,...,2n,) € {0,1}"™ is a code word, where z; € {0,1}"2.

The codeword after the interference (e.g. with noise) is marked as § = (yl, . ,ym) and in particular we
have dist (g,)

We will denote the result of the first stage of the algorithm as (ul, . ,um) . U = arg,c Mingode dist(u;, ;)

We will mark e} = dist(u;,y;) and &;" = dist(z;, ;).

Z€;§Z€i< dléd2

Now, for all ¢ we will define p; = min {1, %}2} and we will define v; in the following way:

7 With probability p;
v =
’ u; With probability 1 — p;

Claim 1. Pr[v; =7] + 2Pr [mistake at coordinate i| < dz%.

From the claim we have E [#7] + 2 - E [#errors] < e g, Thus, E [#7? + 2 - #errors] < dj.

da/2

proof of the claim. Splitting into cases:

1. u; = x; then

. €; €;
Pr [v; :?]:m1n{1,d2/2}§d2/2
(o 757 o
Pr ni # o1] =0

2. If w; # x; then e; + €] > dist (u;, z;) > d2 we need to calculate

1-p;
—— v; A7
Prlv; =7]+2-Pr =pit2(1—pi)=2-pi=1+1-p;))=2—p;
n; # 1
Ifpp=1then2—p,=1< dz%
On the other hand, if p; = %;2 then 2 — p; < 2—2d2d—gei - Zd—zi.

O

All of this happens in the expected value, we want this to occur always. We will choose a p € [0,1]
according to the uniform distribution. For the i-th coordinate we will define

/

? G
S da/2
u; else

V; =

/

Noticing that Pr[v; =7] = min {1 ~ } then we still have

) d2/2

E [#7? + 2 - #errors] < dy

Also, the “interesting” values of p are the values where the vector v changes, they are in the set {0,1} U
{eifarpe},_, n,- Thus, we arrive at the following algorithm

Algorithm 1 Random RSo decoder
1: For all y; find the closest codeword and mark it with u; we will
2: Define €] = dist(u;, y;).
3: Choose p € {0,1} U {i/as/2},
4: Define v (p) as follows 7

oni’

u; else

? < e
w(p):{ pP= /d2/2

Using the WB algorithm, fix v (p).
if dist(v(p),y) < % then Done.
else
goto 3
end if
10: if the distance from the returned word is smaller than % we are done. (if not then we’ll move on to
the next p.)

2 List-decoding

Up until now we’ve dealt with unique decoding, meaning that if the number of errors is at most %,
we will return the closest codeword. Now we will discuss a system the returns more than one matching
codeword.

Definition 1. We say that a code C' C Fy is a (e,l) code if in every ball with a radius of e there is at
most [codewords.

Example 1. If dist(C) = d then C'is a (%, 1)—code.

Our goal here is given a (e,l) code and a word y to find in an efficient way all of the codewords at a
distance of at most e from §.

Such an algorithm is called a List-Decoding algorithm.

2.1 Conversion from an n, k,d code

If we assume that C' is [n, k, d]q. For what parameters is C' an (e,) code?

Assume that 71, 4o, ..., T; are code words with distances from § of at most e meaning that each z; agrees
with ¢ in at least n — e coordinates. We will create double sided graph, with all of the Z; on one side and
y on the other and connect each x; to y; if the j-th coordinate of Z; equals to y;.

How many neighbors in common do &; and &; have (i # j)? At most n —d.

We will want to bound [using the aforementioned bounds.
In this graph we do not have a K,,_4+12 (meaning that every two coordinates have less than n —d + 1
neighbors) and in our case (RS codes) we have no Kj o.

Claim 2. If t > /nk then | < ;"

In order to bound [we will count the number of objects of the form #;y;#} meaning that there is an
edge between z; and y; and between y; and 7}, denote this as #. Let Aq,..., A, be the degrees of the

edges of L.
n Az
-2 (3)
=0

#g(k—l)(é)

e R S YU DYV SRV (R

On the other hand, we also have:

It is known that A; =1 - ¢, then according to the Cauchy-Schwartz inequality
2
- , 1Pt?
Al < Al = — —lt<(k—-1I(-1
Soa] sn¥ats EEwst-ni0-)

t2 t2
él-ﬁ—tg(k‘—l)(l—l)<k-lél E_k <t

And then, if t> < nk we have | < tﬁtnk.

Claim 3. A RS [n,k,n — k + 1], code is (e,1) for (n —e)? > nk and [< (7;’1_(:)7;?%

Corollary 1. Let j € Fy (n < q) the number of polynomials with a degree smaller than k for which
#{ilf (i) = yi} > Vnk
is at most n?.

Corollary 2. The number of RS codes at a distance of < n — \/nk from the word g is < n?

In List-decoding we can expect that from a percentage of errors that is smaller than 1 — v/R we can
calculate all of the close codewords. Notice that if we would ask for unique-decoding then the number of
errors that we would be able to fix is 1 (1 — R) = 16.

Our goal now is to find an efficient List-decoding algorithm for RS.

Problem 1. There are polynomials fi, fo with degrees < k such that for all «y;, y; = f1 (o) or y; = fa ().
We need to find f; and f2 (under the assumption that there are enough agreements with each of them).

We will notice that at every point «; we have

0= (yi — fi(aw)) (vi — f2 ()

and
B(ﬁ‘i) C(oy)

0=y — v (fi (1) + fo () + f1 (as) - fo (o)

Where B = f1 4+ fo and C = f1 - fo, deg B < k and degC' < 2k — 1. We will solve the following set of
equations with variables that are the coefficients of B and C. Fori € {1,2,...,n} y?—y;-B () +C (o) =
0. It is known that this system has a solution. Let us assume that we have solved it and arrived at
B’ (x),C’ (x) then we get a polynomial y? —y- B’ (x) + C'(x) we will split the polynomial into irreducible
factors (if possible) .

Claim 4. If the number of times that f; agrees with ¢ is at least 2k + 1 then y — f1 () is one the factors.

Proof. Let «; for which fi (o;) = y; be an «; for which this is true y? — v; B’ (a;) + C' (a;) = 0 and thus

deg<2k—1 <2k—1 <2k—1

2 : 2 ! !
fi(a;)” = fi () B' () + C' (e;) = 0. In other words, at a; the polynomial fi(z)* + f1(z)B'(z) + C'(x)
vanishes. In particular the polynomial is zero meaning that it is one of the factors. O

