
Introduction to Error Correcting Codes

Amir Shpilka
Arazim c©

February 4, 2016

1 Concatenated RS-code

Reminder 1. An RS code is a [n1, k1, d1]q=2l where k1 + d1 = n1.
Code [c2, l, d2]2
An RS◦ code is [n1 · n2, k · l, d1 · d2]2 since (F2)

l ∼= F2l . We will show an algorithm that corrects code with
a number of errors that is e < d1·d2

2 .

As a warm-up: fixing errors with e < d1d2
4 errors in a time of poly

(
n1, 2

l · n2
)

(for q = O (n1) we have

poly(n1)).
The algorithm:

1. We will fix each one of the n1 blocks, as good as possible (Brute-force).

2. Now, we will fix the output of that using W-B for RS and arrive at the code word that we sent.

Analysis: If the block is “small” meaning that there were at most d2
2 errors, then step 1 would have

fixed it. Therefore, since there were less than d1
2 ·

d2
2 mistakes, the number of blocks where we will have a

mistake is smaller than d1
2

And now, the W-B algorithm fixes this without any errors.

1.1 Some markings

x̄ =
(
x1, . . . , xn1

)
∈ {0, 1}n1·n2 is a code word, where xi ∈ {0, 1}n2 .

The codeword after the interference (e.g. with noise) is marked as ȳ =
(
y1, . . . , yn1

)
and in particular we

have dist (ȳ, x̄)
We will denote the result of the first stage of the algorithm as

(
u1, . . . , un1

)
. ui = argu∈mincode dist(ui, yi)

We will mark e′i = dist(ui, yi) and êi
′ = dist(xi, yi).∑

e′i ≤
∑

ei <
d1 · d2

2

Now, for all i we will define pi = min
{

1,
e′i

d2/2

}
and we will define vi in the following way:

vi =

{
? With probability pi

ui With probability 1− pi

Claim 1. Pr [vi =?] + 2Pr [mistake at coordinate i] < ei
d2/2

.

From the claim we have E [#?] + 2 · E [#errors] <
∑
ei

d2/2
< d1 Thus, E [#? + 2 ·#errors] < d1.

1

proof of the claim. Splitting into cases:

1. ui = xi then

Pr [vi =?] = min

{
1,

ei
d2/2

}
≤ ei

d2/2

Pr

[
vi 6=?
ni 6= x1

]
= 0

2. If ui 6= xi then ei + e′i ≥ dist (ui, xi) ≥ d2 we need to calculate

pi︷ ︸︸ ︷
Pr [vi =?] +2 ·

1−pi︷ ︸︸ ︷
Pr

[
vi 6=?
ni 6= x1

]
= pi + 2 (1− pi) = 2− pi = 1 + (1− pi) = 2− pi

If pi = 1 then 2− pi = 1 ≤ ei
d2/2

On the other hand, if pi = ei
d2/2

then 2− pi ≤ 2− 2d2−eid2
− 2ei

d2
.

All of this happens in the expected value, we want this to occur always. We will choose a p ∈ [0, 1]
according to the uniform distribution. For the i-th coordinate we will define

vi =

? p ≤ e′i
d2/2

ui else

Noticing that Pr [vi =?] = min
{

1,
e′i

d2/2

}
then we still have

E [#? + 2 ·#errors] < d1

Also, the “interesting” values of p are the values where the vector v̄ changes, they are in the set {0, 1} ∪{
e′i/d2/2

}
i=1,...,n1

. Thus, we arrive at the following algorithm

Algorithm 1 Random RS◦ decoder

1: For all yi find the closest codeword and mark it with ui we will
2: Define e′i = dist(ui, yi).
3: Choose p ∈ {0, 1} ∪

{
e′i/d2/2

}
i=1,...,n1

:

4: Define v̄ (p) as follows

vi (p) =

{
? p ≤ e′i/d2/2

ui else

5: Using the WB algorithm, fix v̄ (p).
6: if dist(v̄(p), ȳ) < d1·d2

2 then Done.
7: else
8: goto 3
9: end if

10: if the distance from the returned word is smaller than d1d2
2 we are done. (if not then we’ll move on to

the next p.)

2

2 List-decoding

Up until now we’ve dealt with unique decoding, meaning that if the number of errors is at most d−1
2 ,

we will return the closest codeword. Now we will discuss a system the returns more than one matching
codeword.

Definition 1. We say that a code C ⊆ Fnq is a (e, l) code if in every ball with a radius of e there is at
most l codewords.

Example 1. If dist(C) = d then C is a
(
d−1
2 , 1

)
-code.

Our goal here is given a (e, l) code and a word ȳ to find in an efficient way all of the codewords at a
distance of at most e from ȳ.
Such an algorithm is called a List-Decoding algorithm.

2.1 Conversion from an n, k, d code

If we assume that C is [n, k, d]q. For what parameters is C an (e, l) code?
Assume that x̄1, x̄2, . . . , x̄l are code words with distances from ȳ of at most e meaning that each x̄i agrees
with ȳ in at least n− e coordinates. We will create double sided graph, with all of the x̄i on one side and
ȳ on the other and connect each x̄i to yj if the j-th coordinate of x̄i equals to yj .

How many neighbors in common do x̄i and x̄j have (i 6= j)? At most n− d.

We will want to bound l using the aforementioned bounds.
In this graph we do not have a Kn−d+1,2 (meaning that every two coordinates have less than n− d+ 1
neighbors) and in our case (RS codes) we have no Kk,2.

Claim 2. If t >
√
nk then l ≤ nt

t2−nk
In order to bound l we will count the number of objects of the form x̄iyj x̄k meaning that there is an

edge between x̄i and yj and between yj and x̄k, denote this as #. Let ∆1, . . . ,∆n be the degrees of the
edges of L.

=
n∑
i=0

(
∆i

2

)
On the other hand, we also have:

≤ (k − 1)

(
l

2

)
∑ ∆i (∆i − 1)

2
= # ≤ (k − 1) · l (l − 1)

2
⇒
∑

∆2
i −

∑
∆i ≤ (k − 1) l (l − 1)

It is known that
∑

∆i = l · t, then according to the Cauchy-Schwartz inequality n∑
n=1

∆i

2

≤ n
∑

∆2
i ⇒

l2t2

n
− lt ≤ (k − 1) l (l − 1)

⇒ l · t
2

n
− t ≤ (k − 1) (l − 1) < k · l⇒ l

(
t2

n
− k

)
≤ t

And then, if t2 < nk we have l ≤ nt
t2−nk .

3

Claim 3. A RS [n, k, n− k + 1]q code is (e, l) for (n− e)2 > nk and l ≤ n(n−e)
(n−e)2−nk .

Corollary 1. Let ȳ ∈ Fnq (n < q) the number of polynomials with a degree smaller than k for which

#
{
i|f (αi) = yi

}
>
√
nk

is at most n2.

Corollary 2. The number of RS codes at a distance of < n−
√
nk from the word ȳ is ≤ n2

In List-decoding we can expect that from a percentage of errors that is smaller than 1−
√
R we can

calculate all of the close codewords. Notice that if we would ask for unique-decoding then the number of
errors that we would be able to fix is 1

2 (1−R) = 1
2δ.

Our goal now is to find an efficient List-decoding algorithm for RS.

Problem 1. There are polynomials f1, f2 with degrees < k such that for all αi, yi = f1 (αi) or yi = f2 (αi).
We need to find f1 and f2 (under the assumption that there are enough agreements with each of them).

We will notice that at every point αi we have

0 =
(
yi − f1(αi)

) (
yi − f2 (αi)

)
and

0 = y2i − yi

B(αi)︷ ︸︸ ︷(
f1 (α1) + f2 (αi)

)
+

C(αi)︷ ︸︸ ︷
f1 (αi) · f2 (αi)

Where B = f1 + f2 and C = f1 · f2, degB < k and degC < 2k − 1. We will solve the following set of
equations with variables that are the coefficients of B and C. For i ∈ {1, 2, . . . , n} y2i −yi ·B (αi)+C (αi) =
0. It is known that this system has a solution. Let us assume that we have solved it and arrived at
B′ (x) , C ′ (x) then we get a polynomial y2− y ·B′ (x) +C ′(x) we will split the polynomial into irreducible
factors (if possible) .

Claim 4. If the number of times that f1 agrees with ȳ is at least 2k+ 1 then y− f1 (x) is one the factors.

Proof. Let αi for which f1 (αi) = yi be an αi for which this is true y2i − yiB′ (αi) + C ′ (αi) = 0 and thus

fi (αi)
2− fi (αi)B

′ (αi) +C ′ (αi) = 0. In other words, at αi the polynomial

deg<2k−1︷ ︸︸ ︷
f1(x)2 +

<2k−1︷ ︸︸ ︷
f1(x)B′(x) +

<2k−1︷ ︸︸ ︷
C ′(x)

vanishes. In particular the polynomial is zero meaning that it is one of the factors.

4

