
Introduction to Error Correcting Codes

Amir Shpilka
Arazim c©

January 13, 2016

In this lesson

1. Complexity of correction in a general linear code.

2. A cryptographic scheme based on the difficulty of decoding a linear code.

3. Secret sharing.

4. Recap of course.

1 The nearest codeword problem

Given a matrix G ∈Mk×n over F2 and a word y ∈ Fn
2 and a parameter δ, decide if there is a word with a

distance ≤ δn from y.

Theorem 1. The nearest codeword problem is in NPC.

Proof. We will introduce the following problem, which is NPCand show a reduction from our problem.

Problem 1 (Max-cut). Given a graph Γ = (V,E) and a parameter s, decide whether there is a cut in the
graph such that |S, Sc|

In our case, let Γ = (V,E) be a graph. We will define the matrix G ∈ M|V |×|E| for all (u, v) ∈ E we
will set Ge,v = Ge,u = 1 .
There exists a cut with size ≥ S
⇔ there exists a message 1A with wt(G · 1A)

⇔ the distance of the code word G · 1A from the vector 1̄ is at most |E| − s. Thus δ = |E|−s|E|

Theorem 2. There exists a constant γ > 1 such that the following problem is NPC. Given a graph
Γ = (V,E) and a parameter s, decide whether there is a cut with a size ≤ s or there exists a cut with a
size ≥ γ · s

Corollary 1. There is a constant for which it is hard to approximate the nearest codeword problem.

Problem 2 (Approximating NCP). For any constant η > 0 the following problem is NPC. Given a
generating matrix G ∈ Fn×k

2 , a parameter δ and a codeword y ∈ Fn
2 , decide whether there is a codeword

whos distance from y is at most δn, or every codeword is at least η · δ · n from y.

Proof. For every generating matrix G, parameter η and vector ȳ we will define a new matrix G′, vector
y′ such that if we can solve APX-NCP G′, y′ and a parameter η2 then it is possible to solve APX-NCP
for G, y and a parameter η and this is sufficient.
Construction: instead of writing G′ we will describe a codeword. For all n + 1 original codewrds

1

b, c1, . . . , cn ∈ C we will define a new code words with a length n2. every codeword will be a matrix with
a size n× n and the word corresponding to (b, c1, . . . , cn) is ..

.

b

..
.

b

··
·

+


 . . .

c1 . . . cn
. . .


It is obvious that the new code is linear. We will show that if C is the nearest codeword to y at a distance
of t then in C ′, the nearest codeword y′ is at a distance of t2. For simplicity we will assume that ȳ = 1̄
and define y′ = (ȳ) (matrix with only 1’s).

Let x ∈ C be the closest codeword to y. x = (

t︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1).

b = x ci =

{
x xi = 0

0 xi = 1

And the codeword matching (b, c1, . . . , cn) is

(
0|1
)

+

(
0|0
1|0

)
=

(
0|1
1|1

)

We have found a codeword in C ′ whos distance from y′ is exactly t2.

2 McEliece scheme

An encryption scheme with a public key. We will assume that C is a linear code with a generating matrix
G ∈Mn×k for which there is an efficient algorithm for t errors.
Key creation:

1. We will randomize an invertible matrix k × k A.

2. We will randomize a permutation matrix π : [n]→ [n] and let P be a matrix that represents it.

• Secret key: A,G, P .

• Public key: G′ = P ·G ·A (we assume that G is known).

• Encryption: Given a message x ∈ {0, 1}k, Alice will randomize a vector z ∈ {0, 1}n such that z has
t 1’s.

• The encrypted text: G′ · x+ z.

• Given a y, and using the secret key we will calculate P−1 and use it as follows:

P−1 · y = P−1G′ · x+ P−1z = P−1 · PGAx+ P−1z = G ·Ax̄+ z′

where z′ has the same weight t. We will run the code correcting algorithm and arrive at A · x̄ and
after multiplying by A−1 we arrive at the original x.

2

3 Secret sharing

There is a secret s and a parameter n ≥ t, We want to divide s to n people such that each person will
recieve a bi.
Requirements:

1. Every ≥ t people will be able to find s from their parts

2’ No t− 1 people will be able to find s.

2. No t− 1 people will be able to glean any information from the code.

Construction:
We will assume that S ∈ F, |F| > n and we will randomize a polynomail f(x) with a degree of t− 1 over
F for which f(0) = s. We will divide the codes by choosing different and nonzero β1, . . . , βn ∈ F

f(x) =

t−1∑
i=1

αix
i + s bi = f(βi)

Claim 1. Every t− 1 people can recover f and calculate s.

Claim 2. t− 1 people have no information about s.

4 In this course

• Shannon bound.

• Classic codes: Hamming, Adamard, RS, RM.

• Bounds : Hamming, Singleton, Plotkin, GV.

• MDS codes (RS for example).

• Operations: Adding a prity bit, puncturing, multiplying and composition.

• Constructions (Justesen codes): using the Wozencraft example. (Note: we can approach the Shan-
non bound as much as we would like).

• Algorithms: RS W-B, RM, composition.

• List-decoding: Algorithm for RS, local RS (reduction from worst-case, average-case, hardness).

• Bound on list-decoding: Johnson bound, bound on RS.

• Elias Bassalygo bound.

• Expanding graphs and codes.

• A construction of linear time decoding and encoding.

• Effcient codes which meet the Shannon bound.

• Complexity of decrypting a “random” code.

• An encryption scheme.

• A secret sharing scheme.

3

