Complex Function Theory

Mikhail Sodin Arazim ©

December 1, 2015

Theorem 1 (Inverse function). Let $g \subset \mathbb{C}$ be a domain. $f \in A(G), f : G \xrightarrow[1-1]{onto} G' \Rightarrow f = f^{-1} \in \mathbb{C}$ $A(G), g(w) = \frac{1}{f'(g(w))} (f'(z) \neq 0).$

Proof. Next month $\ddot{\sim}$

Series 1

Let $\{a_n\} \subset \mathbb{C}, \sum_{m} a_m$.

Theorem 2 (Cauchy criterion).

$$\sum_{n} a_{n} \ converges \Leftrightarrow \forall \varepsilon > 0. \exists N. \forall m, n \geq N. \left| \sum_{k=n}^{m} a_{k} \right| < \varepsilon$$

Definition 1 (Absolute convergence). A series $\{a_n\}$ is said to absolutely converge if $\sum_n |a_n|$ converges.

Theorem 3. If a series absolutely converges, changing the order of summation doesn't change the sum.

If $A = \sum_n a_n$, $B = \sum_n bb_m$ absolutely converge, then $\sum_{m,n} a_n b_m$ absolutely converges to AB

Example 1.

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n!} \cdot \frac{1}{m!} \qquad \sum_{n=1}^{\infty} \frac{z^n}{n!} \sum_{m=0}^{\infty} \frac{w^m}{m!} = \sum_{N=0}^{\infty} \frac{(z+w)^N}{N!}$$
$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \cdot \sum_{m=0}^{\infty} (-1)^m \frac{z^{2m}}{(2m)!} =$$

Uniform convergence

Let $\star = \sum_n a_n z^n$ where $z \in E \subset \mathbb{C}, \ a_n \mathbb{C} \to \mathbb{R}$. We will assume that $\sum_n m_n < \infty \text{m sup}_E |a_n| \le m_n$ then \star uniformly converges (and absolutely).

Example 2. $\sum_{n=0}^{\infty} z^n$ converges in $|z| \le const < 1$. $\sum_{n=0}^{\infty} \left(\frac{z-1}{z+1}\right)^n$ converges when $\left|\frac{z-1}{z+1}\right| < 1$ meaning that it converges uniformly and absolutely in every compact $K \subset \{\Re(z) > 0\}$

Definition 2. A series $\sum_{n=0}^{\infty} a_n z^n$ converges **normally** in the domain G if it converges uniformly and absolutely in every compact $K \subset G$.

1

2 Power series

A series around z_0 looks like $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, $(a_n)_n = 0^{\infty} \subseteq \mathbb{C}$, $z_0 \in \mathbb{C}$ and $(A) := \sum_{n=0}^{\infty} a_n z^n$ we will work WLOG with $z_0 = 0$.

Theorem 4 (Cauchy hadamard). The convergence radius is $\frac{1}{R}\overline{\lim}_{n\to\infty}|a_n|^{1/n}$

Theorem 5. 1. A series (A) converges in $\triangle_R := \{|z| < R\}$.

2. A series converges in $\{|z| > R\} = \mathbb{C}\backslash\overline{\triangle_R}$

3. $f(z) := \sum_{n=0}^{\infty} a_n z^n f \in A(\Delta_R)$

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n := (A)'$$

Corollary 1. 1. $R_{A'} = R_A^{-1}$

2. All of the derivatives $f^{(n)}$ are analytic in \triangle_R and $a_n = \frac{f^{(n)}(0)}{n!}$

Proof. 1. Let q < 1 we need to prove that (A) uniformly converges in $\{|z| \le qR\}$. Let $\varepsilon < 0$ be small such that $q(1+\varepsilon) < 1$. Let $z \in \mathbb{C}, |z| \le qR$

$$|a_n z^n| \le |a_n| q^n R^n \le ((1+\varepsilon) q)^n$$

Where the second inequality comes from

$$\forall n \ge n_{\varepsilon} : |a_n| \le \left(\frac{1-\varepsilon}{R}\right)^n$$

2. If |z| < R then

$$\forall \varepsilon > 0 \exists (n_j) \to \infty |a_{n_j}| > \left(\frac{1-\varepsilon}{R}\right)^{n_j}$$

WLOG $|z| \ge qR, q > 1$. Then $(1 - \varepsilon)q > 1$ for ε which is small enough.

$$\left| a_{n_j} z^{n_j} \right| \ge \left(\frac{1 - \varepsilon}{R} \right)^{n_j} (qR)^{n_j} = \left((1 - \varepsilon) q \right)^{n_j} \xrightarrow{n \to \infty} \infty$$

3.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

From Calculus 1, $R_{f_1} = R_f$. Using the taylor expansion:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=N+1}^{\infty} a_n z^n$$

 $f_1 = \lim N \to \infty p_N'(z)$

$$\frac{f(z) - f(\xi)}{z - \xi} - f_i(\xi) = \underbrace{\frac{z - II}{p_N(z) - p_N(\xi)} - p'_N(\xi)}_{z - \xi} + \cdots + \underbrace{p'_n(\xi) - f_1(\xi)}_{z - \xi} + \underbrace{\frac{z - III}{R_N(z) - R_N(\xi)}}_{z - \xi}$$

 $[\]overline{1}\overline{\lim} \left((n+1)|a_{n+1}| \right)^{1/n} = \overline{\lim} |a_n|^{1/n}$

WLOG $|\xi| \leq \rho R$, $z \to \xi$ it is obvious that $I, II \to 0$. As for III...

$$III = \left| \frac{R_N(z) - R_N(\xi)}{z - \xi} \right| = \left| \sum_{n > N} a_n \cdot \frac{z^n - \xi^n}{z - \xi} \right| = \left| \sum_{n > N} a_n \left(z^{n-1} + z^{n-2} \xi + \dots + \xi^{n-1} \right) \right| \le \dots \le \sum_{n > N} |a_n| \, n\rho^{n-1} < \infty$$

Which converges since $\rho < R$.