Complex Function Theory

Mikhail Sodin Arazim ©

November 10, 2015

In this lesson we will show that z^* is a reflection, e.g. for all $\{z_1, z_2, z_3\} \subset C$ where C is a line or a circle (we will separate these two cases)

$$(z_1, z_2, z_3, z^*) = \overline{(z_1, z_2, z_3, z)}$$

Proof. 1. If C is a line, $z_1 = \infty$

$$\frac{z^* - z_2}{z_3 - z_2} = \frac{\bar{z} - \bar{z}_2}{\bar{z}_3 - \bar{z}_2}$$

The distances are equal.

$$|z_3 - z_2| = |\bar{z}_3 - \bar{z}_2| \Rightarrow |z^* - z_2| = |z - z_2|$$

All that is left to prove is that

$$[z, z^*] \perp [z_2, z_3]$$
 and $z - z^* \perp z_2 - z_3$

Using the properties for the inner product, for any $w_1 = (u_1, v_1)$ $w_2 = (u_2, v_2)$ we have

$$\langle w_1, w_2 \rangle = u_1 u_2 + v_1 v_2 = \Re (w_1 \bar{w}_2)$$

Does $\Re\left[\left(z-z^*\right)\overline{\left(z_2-z_3\right)}\right]$ equal to 0? Yes.

$$(z-z^*)(\bar{z}_2-\bar{z}_3) = \underbrace{(z^*-z_2)(z_2-z_3)}_{=(z_2-z_3)} + (z_2-z^*)(z_2-z_3) = (z_2-z_3)(z^*-z_2) + (z_2-z^*)(z_2-z_3) \in \mathbb{R}i$$

And therefore $\Re(\dots) = 0$, as needed.

Explanation: Let $w_1, w_2 \in \mathbb{C}$. Then $w_1 \bar{w}_2 - \bar{w}_1 w_2 \in \mathbb{R}$. In addition, z_1, z_2 are in different halves of the plane. This is because the function $\varphi(z) = \frac{z-z_2}{z_3-z_2}$ sends $(\infty, z_2, z_3) \mapsto (\infty, 0, 1)$ and for all values in \mathbb{C} we have $\varphi : \mathbb{C} \hookrightarrow \mathbb{R}$, then we are done.

2. In the second case, if C is a circle with a at the center and a radius of r.

Claim 1.
$$(z^* - a) \overline{(z - a)} = r^2$$
.

Proof. Using the fact that Möbius transformation keep the cross-product:

$$\overline{(z_1, z_2, z_3, z)} = \overline{(z_1 - a, z_2 - a, z_3 - a, z - a)} = \left(\frac{r^2}{z_1 - a}, \frac{r^2}{z_2 - a}, \frac{r^2}{z_3 - a}, \overline{z - a}\right) \\
= \left(z_1 - a, z_2 - a, z_3 - a, \frac{r^2}{\overline{z - a}}\right) = \left(z_1, z_2, z_3, a + \frac{r^2}{\overline{z} - \overline{a}}\right) \to z^* = a + \frac{r^2}{\overline{z} - \overline{a}}$$

Where the third equality comes from the fact that for all $z_j \in C$ we have $(z_j - a) \overline{(z_j - a)} = |z_j - a| = r^2 \Rightarrow \overline{z_j - a} = r^2/z_j - a$ Inferring from that we arrive at:

(a)
$$|z^*||z - a| = r^2 \Rightarrow |z^* - a| < r \Leftrightarrow |z - a| > r$$

(b) $\frac{z^*-a}{z-a} = \frac{r^2}{|z-a|^2} > 0 \Rightarrow z_1, z^*$ are on the same ray from the center of the circle.

Example 1. Using the group $M\ddot{o}b(\mathbb{C})$ there are a few interseting sub-groups.

1. $\mathbb{C}_{+}(=\mathbb{H}) = \{\Im(z) > 0\}$. We are looking at the Möbius transformations which are one-to-one and onto over this group. e.g. $\mathbb{C}_{+} \xrightarrow{\text{onto}} \mathbb{C}_{+} \Rightarrow \mathbb{R} \to \mathbb{R}$ This sub-group can be showed as

$$h_A(z) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} a, b, c, d \in \mathbb{R} \qquad \det A = ad - bc = 1 \Rightarrow SL_2(\mathbb{R})$$

$$\Im(h_{A}(z)) = \Im\left(\frac{az+b}{cz+d}\right) = \frac{\Im\left[\left(az+b\right)\left(c\bar{z}+d\right)\right]}{\left|cz+d\right|^{2}} = \frac{\Im\left(ac|z|^{2}+adz+bc\bar{z}+bd\right)}{\left|cz+d\right|^{2}}$$
$$= \frac{ad\Im(z)-bc\Im(z)}{\left|cz+d\right|^{2}} = \frac{\Im(z)}{\left|cz+d\right|^{2}} \Rightarrow h_{A}: \quad \mathbb{R} \xrightarrow{onto} \quad \mathbb{R}$$
$$\mathbb{C}_{-} \xrightarrow{onto} \quad \mathbb{C}_{-}$$

2.
$$\mathbb{D} = \{|z| < 1\}$$
 $h_A : \mathbb{D} \xrightarrow[1-1]{onto} h_A(z) = \frac{az+b}{bz+\bar{a}}$

$$A = \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}$$
 $a, b \in \mathbb{C}$ $|a| - |b| = 1$

Check:

$$1 - \left| h_A(z) \right|^2 = \frac{\left| \bar{b}z - \bar{a} \right|^2 - \left| az + b \right|^2}{\left| \bar{b}z + \bar{a} \right|^2} \stackrel{?}{=} \frac{1 - \left| z \right|^2}{\left| \bar{b}z + \bar{a} \right|^2}$$

Note 1.

$$\frac{az+b}{\bar{b}z+\bar{a}} = \frac{a}{\bar{a}} \frac{z+b/a}{1+\bar{b}/a} = \lambda \frac{z-z_0}{1-z\bar{z}_0}$$

Where $\lambda := \frac{a}{\bar{a}} (|\lambda| = 1)$, $h_A(z_0) = 0$ and $z_0 : -b/a$. Here λ is parameter representing the rotation and z_0 is an axis around which the rotation occurs. $(|z_0| < 1 \text{ since } |b| < |a|)$. An interesting map is the Cayley transform from the positive half of the complex plane to the unit disk:

$$z \mapsto \frac{z-i}{z+i}$$
 $\mathbb{C}_+ \hookrightarrow \mathbb{D}$