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1 Mobius transformation
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1.1 Projective space

In the space C?\ {0} we can say that two vectors Z and W are equivalent (Z ~ W) if there are two
scalars, a,b € C such that aZ + W =0= W = \Z, X € C\ {0}.

The space of equivalence relations over C is marked as P (C)

For example,
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1.2 Fixed points

e In the case of ¢ =0, then h(z) = az + b, az + b = z the fixed points in this case are oo, a—_bl.
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e Either way, # {fixed pts} < 2 (h # Id)

1.3 Three-fold transitivity

Theorem 1. Let (21,22, 23) and (w1, ws, w2) such that w; # w;(i # j) and z; # z;j(i # j). THen there
exists a unique h € Mob (C) such that h : (21, 22, 23) — (w1, wa, w3)

Phoifueness Let hy, ho @ (21, 22, 23) — (w1, w2, wy). We will define h := h;l ohih(z;) =z = h=1id =
hi = ho

Existence ¢ (21, 22, 23) — (00,0, 1)
zZ — 29 . Z3 — 29

(p(z):Z—Zl .23—2’1

o1 = (21, 22, 23) = (w1, wa, w3) w2 = (21, 22, 23) — (w1, w2, w3)

And the required transformation is h = ¢ Lo 1
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Theorem 2. Fvery mébius transformation is a composition of elementary transformations.
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Definition 2 (extended circle). An extended circle is a circle or a line (passes throught the north pole).

Theorem 3. Mdbius transformations keep extended circles.



Proof. Tt is enough to show that this is true for h(z) = L.
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Definition 3. (z1, 29, 23, 24) — ¢ (24) % : % Where z; # zj if i # j. (00, 22,23, 24) = %
(21,22, 23,21) = 00
Theorem 4.
Vh € Mob (C) . (h(zl), h(ZQ), h(Z3), h(Z4)) = (Zl, 29,23, 24)
Proof. ¢ o h™ : h(z1) — o0 h(z2) — 0 hz — 1
(h(zl),h(ZQ),h(2:3),h(Z4) = ((po h71> (h(Z4)) = ¢ (z4) (21, 22, 23, 24)
O

Corollary 1. w : z; — w; then for w = w(z) we have (w1, w2, ws, wq) = (21, 22, 23, 24).
Theorem 5. {21, 22,23, 24} are on the same extended circle iff (21, 22, 23, 24) € R.

Proof. We will take an extended circle C' such that z1,z9,23 € C' (we know that this exists from high
school). Also, by definition we know that ¢ : C — R. Since ¢ is one-to-one and onto, we have
(21,22,23,24) = ¢ (24) ER & @(z4) € p(C) & 24 € C O

3 Symmetry using extended circles

The ideas expressed in this section are mostly geometrical, and as such the write of these notes ahd
trouble copying them down. For further refference, hopefully we will find handwritten notes.
Definition 4. ¢(C) =R, 2z* € C & z = 2%, p(2*) = p(2).

We will assume that (C) = R, does ¢ (2*) = ¢(2)?
We will define w := ¢(2) @ = ¢(2*) and z = ¢! (w) then ¢(z) = (Yo ™) (w) Y(2*) = (Yot (w)
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Corollary 2. {z1, 29,23} C C then 2’ = 2* iff (21, 22, 23, 24) = (21, 22, 23, 24)

Corollary 3. Maobius transformations keep the symmetry. C' = h(C),C. z1,2* are symmetric over
C = h(z),h(z*) are symmetric over C' = h(C)



