Complex Function Theory

Mikhail Sodin Arazim ©

October 29, 2015

1 Continuation of arcs

• An arc $\gamma:I\to\mathbb{C}$ is said to be in C^1 if for all $t\in I$

$$\exists \lim_{t' \to t} \frac{\gamma(t') - \gamma(t)}{t' - t} = \gamma'(t) = \dot{\gamma}(t)$$

- If there exists a countable set of points where the limit does not exist, the arc is said to be intermitenly continuous.
- $t_0 \in I$ is regular if $\dot{\gamma} \neq 0$.
- The angle between two arcs γ_1 and γ_2 is $\alpha = \arg \dot{\gamma}_2(t_2) \arg \dot{\gamma}_1(t_1) \ (\gamma_1(t_1) = \gamma_2(t_2))$.

Theorem 1. If $f'(z_0) \neq 0$, $f \in A(u_{z_0})$ (u_{z_0} is a neighboorhood of z_0) then f keeps the angle between arcs intersecting at z_0

Proof.

Claim 1.

$$\frac{d}{dt}\left(f\circ\gamma\right)\left(t\right) = f'\left(\gamma\left(t\right)\right)\dot{\gamma}\left(t\right)$$

$$\beta = \arg \left[f'(z_0) \dot{\gamma}_2(t_2) \right] - \arg \left[f'(z_0) \dot{\gamma}_1(t_2) \right] = \arg f'(z_0) + \arg \dot{\gamma}_2(t_2) - \arg f'(z_0) - \arg \dot{\gamma}_1(t_1)$$
$$= \arg \dot{\gamma}_2(t_2) - \arg \dot{\gamma}_1(t_1) = \alpha$$

Definition 1. $f: \mathbb{R}^2 \supset G \to \mathbb{R}^2, z_0 = (x_0, y_0) \in G$

f is a **conformal map** in z_0 if f keeps the angle between two arcs at z_0 .

Theorem 2. If $f \in C^1(G)$ is a conformal map in all of G, then $f \in A(G)$ and $f'(z) \neq 0$ in G.

Lemma 1. A special case of this is in the linear transformation $Tz = az + b\bar{z}$ $(a, b \in \mathbb{C})$. If T is conformal then b = 0.

of the special case.

- $a + b \neq 0$ (otherwise $T\mathbb{R} = \{0\}$).
- $a \neq 0$ (otherwise $Tz = b\bar{z}$ "anti-conformal").

Let λ be a point on the unit circle.

$$\arg \lambda = \arg \left(a\lambda + b\bar{\lambda} \right) - \arg \left(a + b \right)$$

$$0 = \arg \left(a + b\frac{\bar{\lambda}}{\lambda} \right) - \arg \left(a + b \right)$$

$$\forall \lambda. |\lambda| = 1. \arg \left(a + b\frac{\bar{\lambda}}{\lambda} \right) = \arg \left(a + b \right)$$

$$\left| b\frac{\bar{\lambda}}{\lambda} \right| = |b| \Rightarrow |b| = 0 \Rightarrow b = 0$$

General case. $\gamma(t_0) = z_0, \gamma(t) = x(t) + iy(t)$

$$\frac{d}{dt}\left(f\circ\gamma\right)\left(t\right) = \frac{\partial f(z_0)}{\partial x}\dot{x} + \frac{\partial f(z_0)}{\partial y} = \frac{1}{2}\frac{\partial f(z_0)}{\partial x}\left(\dot{\gamma}\left(t_0\right) + \dot{\bar{\gamma}}(t_0)\right) + \frac{1}{2i}\frac{\partial f(z_0)}{\partial y}\left(\dot{\gamma}\left(t_0\right) + \dot{\bar{\gamma}}(t_0)\right)$$

$$=:a \qquad =:b = \frac{\partial f}{\partial z}$$

$$= \frac{1}{2}\left(\frac{\partial f}{\partial x}\left(z_0\right) - i\frac{\partial f}{\partial y}(z_0)\right) \cdot \dot{\gamma}\left(t_0\right) + \frac{1}{2}\left(\frac{\partial f}{\partial x}\left(z_0\right) + i\frac{\partial f}{\partial y}(z_0)\right) \dot{\bar{\gamma}}\left(t_0\right) = a\dot{\gamma}\left(t_0\right) + b\bar{b}\left(t_0\right)$$

f is conformal at $z_0 \Rightarrow TZ = aZ + b\bar{Z}$ is conformal in Z = 0.

2 Distortion

$$\gamma:[a,b]\to\mathbb{C}$$

$$L(\gamma) = \int_{b}^{a} \underbrace{\sqrt{\dot{x}^{2}(t) + \dot{y}^{2}(t)}}_{\left|\dot{\gamma}(t)\right|} dt = \int_{a}^{b} \left|\dot{\gamma}(t)\right| dt$$

$$L\left(f\circ\gamma\right) = \int_{a}^{b} \left| \frac{d}{dt} \left(f\circ\gamma\right)(t) \right| dt = \int_{a}^{b} \left| f'(\gamma(t)) \right| \left| \dot{\gamma}(t) \right| dt$$