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1 Symmetry principle

As we defined previously, Θ∗ = {s : z̄ ∈ ω}, Θ = Θ∗, Θ± = Ω ∩ C± and I = R ∩Θ.

Theorem 1. Let v ∈ Harm(Ω+ ∩ C(Ω+ ∪ I) and v|I = 0, then

ṽ(z) =


v(z) z ∈ Ω+

0 z ∈ I
−v(z̄) z ∈ Ω−

is harmonic in C.

Theorem 2. Let f ∈ Hol(Ω+) if for z → 0, =f(z) → 0 then f has a continuation f̃ ∈ Hol(Ω) that
satisfies f̃(z) = f(z̄)for all z ∈ Ω.

Proof. It is sufficient to prove in the case that Ω is a circle. Let f = u + iv that satisfies the above
conditions, then v has a harmonic continuation in all of Ω and in Ω there exists a harmonic conjugate u
to v. u+ iv ∈ Hol(Ω)⇒ there exists a continuation of f in Ω, proving the first part.

For the second we will check if u(z̄)
??
= u(z). We will define U(z) = u(z) − u(z̄) this holds that U ∈

Harm(Ω). U |I = 0 and ∂U
∂x |I = 0.

∂U

∂y
|I =

∂u

∂y
|I +

∂u

∂y
|I = 2

∂u

∂y
|I

C−R
= −2

∂v

∂x
|I

v=0
= 0

Then ∂x
∂x = ∂u

∂y = 0 on I

⇒ ∂zU =
1

2

(
∂x − i∂y

)
U = 0

Then U = const and U |I = 0⇒ U = 0⇒ u(z) = u(z̄)

Theorem 3. Let Ω∗ = Ω and I = Ω ∩ C for some clircle C. If

1. f ∈ Hol(Ω+)

2. There exsits a clircle C ′ such that dist(f(z), C ′)→ 0, dist(z, C)→ 0, z ∈ Ω+

Then f has an analytic continuation f̃ to Ω and f̃
(
(z∗)C

)
=
(
f(z)∗

)
C′

Note 1. If f ∈ C(Ω+ ∪ I) and f(I) ⊂ C ′ then (2) holds.

Proof. The proof is mainly graphic, The idea is to take two mobius transformations, the first ϕ transfers
C to the real line and the second ψ transfers C ′ to the real line. Then if we take g = ψ ◦ f ◦ ϕ−1, then
g ∈ Hol(ϕ(Ω+)) then =g(w)→ 0 as =w → 0
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Example 1. 1. Let f ∈ Hol(D) and
∣∣f(z)

∣∣ x→1−−−→ 1 then

f(z) = C
n∏

j=1

z − zj
1− zz̄j

For z1, . . . , zn ∈ D, |C| = 1.

Proof. A special case :f 6= 0 in D, then by the symmetry principle, f has an analytic continuation
in all of Ĉ⇒ f ≡ C,|C| = 1.
In the general case, # {zeroes of f} Let z1, . . . , zn ∈ D be the zeroes. We will define

g(z) = f(z) ·
n∏

j=1

z − zj
1− zz̄j

• g ∈ Hol(D)

• g doesnt have zeroes.

•
∣∣g(z)

∣∣→ 1 as z → 1.

Therefore by the special case, g ≡ C,|C| = 1

2. We will define the annulus A(r,R) =
{
r < |z| < R

}
and

f :

:=A1︷ ︸︸ ︷
A(r1, R1)

1−1−−→
onto

:=A2︷ ︸︸ ︷
A(r2, R2)

is analytic, f = Cz or f = c
z and R2

r2
= R1

r1

Proof. Before we begin, some definitions:

• C−1 =
{
z : |z = r1|

}
,C+

1 =
{
z : |z = R1|

}
• C−2 =

{
z : |z = r1|

}
,C+

2 =
{
z : |z = R2|

}
• γ is a closed arc in A2 which goes around the whole annulus.

• l is an arc which doesn’t intersect with the inverse image of γ and starts at z′ and ends at z′′

(to be defined later)

z → ∂A1 ⇒ f(z) → ∂A2 (dist(z, ∂A1) → 0 ⇒ dist(f(z), ∂A2) → 0). We will assume that this is
not true: zj → ∂A1 ⇒ f(zj) → w ∈ A2. δ <

1
2dist(∂A1, ūz (ūz is a neighboorhood of z). Thus for

a big enough j, dist(zj , ∂A1) < δ ⇒ zj /∈ uz. If z → C−1 ⇒ f(z)→ C−2 or f(z)→ C+
2 Assume that

there exists z′j , z
′′
j → C−1 such that f(z′j)→ C2, f(z′′j )→ C+

2 . l ∩ f−1(γ) 6= ∅

z ∈ l⇒ r1 < |z| < r1 + ε r1 + ε < min
{
|z| : z ∈ f−1(γ)

}
which gives us that f(l) ∩ γ 6= ∅, a contradiction!

We have arrived at a reduction to one of the following two cases: If f : C\ {0} 1−1−−→
onto

C\ {0},
∂C∗ = {0,∞}

(a) z → 0⇒ f(z)→ 0, z →∞⇒ f(z)→∞
(b) z →∞⇒ f(z)→ 0, z → 0⇒ f(z)→∞

For each case we ahve
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(a) f is analytic also in z = 0 ⇒ f ∈ Hol(C) and is injective, therefore f(z) = Cz + B and since
f(0) = 0 we have f(z) = Cz. In addition we have cr1 = r2, cR1 = R2.

(b) 1
f

: C∗
1−1−−→
onto

C∗ thus we have the first case, f(z) = C
z and C

r1
= R2,

C
R1

= r2

Either way, we have the required result that

R2

r2
=
R1

r1
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