Complex Function Theory

Mikhail Sodin Arazim ©

January 12, 2016

1 Symmetry principle

As we defined previously, $\Theta^* = \{s : \bar{z} \in \omega\}, \Theta = \Theta^*, \Theta_{\pm} = \Omega \cap \mathbb{C}_{\pm} \text{ and } I = \mathbb{R} \cap \Theta.$

Theorem 1. Let $v \in Harm(\Omega_+ \cap C(\Omega_+ \cup I) \text{ and } v|_I = 0$, then

$$\tilde{v}(z) = \begin{cases} v(z) & z \in \Omega_+ \\ 0 & z \in I \\ -v(\bar{z}) & z \in \Omega_- \end{cases}$$

is harmonic in \mathbb{C} .

Theorem 2. Let $f \in Hol(\Omega_+)$ if for $z \to 0$, $\Im f(z) \to 0$ then f has a continuation $\tilde{f} \in Hol(\Omega)$ that satisfies $\tilde{f}(z) = \overline{f(\bar{z})}$ for all $z \in \Omega$.

Proof. It is sufficient to prove in the case that Ω is a circle. Let f = u + iv that satisfies the above conditions, then v has a harmonic continuation in all of Ω and in Ω there exists a harmonic conjugate u to v. $u + iv \in Hol(\Omega) \Rightarrow$ there exists a continuation of f in Ω , proving the first part.

For the second we will check if $u(\bar{z}) \stackrel{??}{=} u(z)$. We will define $U(z) = u(z) - u(\bar{z})$ this holds that $U \in Harm(\Omega)$. $U|_I = 0$ and $\frac{\partial U}{\partial x}|_I = 0$.

$$\frac{\partial U}{\partial y}|_{I} = \frac{\partial u}{\partial y}|_{I} + \frac{\partial u}{\partial y}|_{I} = 2\frac{\partial u}{\partial y}|_{I} \stackrel{C-R}{=} -2\frac{\partial v}{\partial x}|_{I} \stackrel{v=0}{=} 0$$

Then $\frac{\partial x}{\partial x} = \frac{\partial u}{\partial y} = 0$ on I

$$\Rightarrow \partial_z U = \frac{1}{2} \left(\partial_x - i \partial_y \right) U = 0$$

Then U = const and $U|_I = 0 \Rightarrow U = 0 \Rightarrow u(z) = u(\overline{z})$

Theorem 3. Let $\Omega^* = \Omega$ and $I = \Omega \cap C$ for some clircle C. If

- 1. $f \in Hol(\Omega_+)$
- 2. There exists a clircle C' such that $dist(f(z), C') \to 0$, $dist(z, C) \to 0, z \in \Omega_+$

Then f has an analytic continuation \tilde{f} to Ω and $\tilde{f}((z^*)_C) = (f(z)^*)_{C'}$

Note 1. If $f \in C(\Omega_+ \cup I)$ and $f(I) \subset C'$ then (2) holds.

Proof. The proof is mainly graphic, The idea is to take two mobius transformations, the first φ transfers C to the real line and the second ψ transfers C' to the real line. Then if we take $g = \psi \circ f \circ \varphi^{-1}$, then $g \in Hol(\varphi(\Omega_+))$ then $\Im g(w) \to 0$ as $\Im w \to 0$

Example 1. 1. Let $f \in Hol(\mathbb{D})$ and $|f(z)| \xrightarrow{x \to 1} 1$ then

$$f(z) = C \prod_{j=1}^{n} \frac{z - z_j}{1 - z\bar{z}_j}$$

For $z_1, \ldots, z_n \in \mathbb{D}, |C| = 1$.

Proof. A special case $: f \neq 0$ in \mathbb{D} , then by the symmetry principle, f has an analytic continuation in all of $\hat{\mathbb{C}} \Rightarrow f \equiv C, |C| = 1$.

In the general case, # {zeroes of f} Let $z_1, \ldots, z_n \in \mathbb{D}$ be the zeroes. We will define

$$g(z) = f(z) \cdot \prod_{j=1}^{n} \frac{z - z_j}{1 - z\bar{z_j}}$$

- $g \in Hol(\mathbb{D})$
- g doesnt have zeroes.
- $|g(z)| \to 1 \text{ as } z \to 1.$

Therefore by the special case, $g \equiv C, |C| = 1$

2. We will define the annulus $A(r, R) = \{r < |z| < R\}$ and

$$f: \overbrace{A(r_1, R_1)}^{:=A_1} \xrightarrow[onto]{1-1} \overbrace{A(r_2, R_2)}^{:=A_2}$$

is analytic, f = Cz or $f = \frac{c}{z}$ and $\frac{R_2}{r_2} = \frac{R_1}{r_1}$

Proof. Before we begin, some definitions:

- $C_1^- = \{z : |z = r_1|\}, C_1^+ = \{z : |z = R_1|\}$
- $C_2^- = \{z : |z = r_1|\}, C_2^+ = \{z : |z = R_2|\}$
- γ is a closed arc in A_2 which goes around the whole annulus.
- *l* is an arc which doesn't intersect with the inverse image of γ and starts at z' and ends at z'' (to be defined later)

 $z \to \partial A_1 \Rightarrow f(z) \to \partial A_2 \ (dist(z,\partial A_1) \to 0 \Rightarrow dist(f(z),\partial A_2) \to 0).$ We will assume that this is not true: $z_j \to \partial A_1 \Rightarrow f(z_j) \to w \in A_2.$ $\delta < \frac{1}{2} dist(\partial A_1, \bar{u_z} \ (\bar{u_z} \ is a neighboorhood of z).$ Thus for a big enough $j, dist(z_j, \partial A_1) < \delta \Rightarrow z_j \notin u_z$. If $z \to C_1^- \Rightarrow f(z) \to C_2^-$ or $f(z) \to C_2^+$ Assume that there exists $z'_j, z''_j \to C_1^-$ such that $f(z'_j) \to C_2, f(z''_j) \to C_2^+$. $l \cap f^{-1}(\gamma) \neq \emptyset$

$$z \in l \Rightarrow r_1 < |z| < r_1 + \varepsilon$$
 $r_1 + \varepsilon < \min\left\{|z| : z \in f^{-1}(\gamma)\right\}$

which gives us that $f(l) \cap \gamma \neq \emptyset$, a contradiction!

We have arrived at a reduction to one of the following two cases: If $f : \mathbb{C} \setminus \{0\} \xrightarrow[onto]{t-1} \mathbb{C} \setminus \{0\}$, $\partial C^* = \{0, \infty\}$

- (a) $z \to 0 \Rightarrow f(z) \to 0, z \to \infty \Rightarrow f(z) \to \infty$
- (b) $z \to \infty \Rightarrow f(z) \to 0, z \to 0 \Rightarrow f(z) \to \infty$

For each case we alve

- (a) f is analytic also in $z = 0 \Rightarrow f \in Hol(\mathbb{C})$ and is injective, therefore f(z) = Cz + B and since f(0) = 0 we have f(z) = Cz. In addition we have $cr_1 = r_2$, $cR_1 = R_2$.
- (b) $\frac{1}{f}: C^* \xrightarrow[onto]{} C^*$ thus we have the first case, $f(z) = \frac{C}{z}$ and $\frac{C}{r_1} = R_2$, $\frac{C}{R_1} = r_2$

Either way, we have the required result that

$$\frac{R_2}{r_2} = \frac{R_1}{r_1}$$