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1 Symmetry principle
As we defined previously, ©* ={s:z € w},0=0* 0L =QNCyand I =RNO.
Theorem 1. Let v € Harm(Qy N C(Q4 UI) and v|; =0, then
v(z) ze4
0(z) =40 zel
—v(z) z€Q_
s harmonic in C.

Theorem 2. Let f € Hol(2y) if for = — 0, Sf(2) — 0 then f has a continuation f € Hol(Q) that
satisfies f(z) = f(2)for all z € Q.

Proof. 1t is sufficient to prove in the case that €2 is a circle. Let f = w + iv that satisfies the above
conditions, then v has a harmonic continuation in all of  and in €2 there exists a harmonic conjugate u
to v. u+iv € Hol(€2) = there exists a continuation of f in €, proving the first part.

For the second we will check if u(Zz) g u(z). We will define U(z) = u(z) — u(z) this holds that U €
Harm(Q). Ulr =0 and ‘g—gh = 0.

oU ou ou ou, C—R OV v=0
=+ =l =2 = 2=, "= 0
dy I 8y’1 + 8y‘1 8y|I c?x‘l
Then%:g—z:OonI
1
:>8ZU:§(8x—i8y)U:0
Then U = const and Ul =0=U =0 = u(z) = u(2) O

Theorem 3. Let Q* =Q and I = QN C for some clircle C. If

1. f e Hol(9,)

2. There exsits a clircle C' such that dist(f(z),C") — 0, dist(z,C) — 0,z € Q4
Then f has an analytic continuation f to 0 and f((z*)(;) = (f(z)*)c,
Note 1. If f € C(Q4 UI) and f(I) C C’ then (2) holds.

Proof. The proof is mainly graphic, The idea is to take two mobius transformations, the first ¢ transfers
C to the real line and the second 1 transfers C’ to the real line. Then if we take g = 1) o f o =1, then
g € Hol(p(€24)) then Sg(w) — 0 as Sw — 0 O



z—1

Example 1. 1. Let f € Hol(D) and ’f ’ —— 1 then

CHl—zz]

For z1,...,2, €D, |C| = 1.

Proof. A special case :f # 0 in D, then by the symmetry principle, f has an analytic continuation
inallof C= f=C,)|C|=1.

In the general case, # {zeroes of f} Let z1,...,2, € D be the zeroes. We will define
-2z
_ . — <
o) = 1) 11—
7j=1
® gcC HOl(]D)
e g doesnt have zeroes.
o |g9(2)| > 1lasz—1.
Therefore by the special case, g = C,|C| =1 O

2. We will define the annulus A(r, R) = {r <|z| < R} and
::Al 1:142

—_—
f : A(Tl,R1> ﬁ A(TQ,RQ)

R2 _ R
1

is analytic, f = Cz or f = £ and

Proof. Before we begin, some definitions:

Cr ={z:lz=nl},Cf ={z:]z = R}
Cy ={z:]z2=nl},C5 ={z:]z = Ry}

e 7 is a closed arc in Ay which goes around the whole annulus.

e [ is an arc which doesn’t intersect with the inverse image of v and starts at 2z’ and ends at 2”
(to be defined later)

z — 0A1 = f(z) = 0Az (dist(z,041) — 0 = dist(f(z),0A2) — 0). We will assume that this is
not true: z; — 941 = f(z;) = w € As. § < 2dist(9A;,u. (u is a neighboorhood of z). Thus for
a big enough j, dist(z],aAl) <§=zj¢u,. Ifz— Cf = f(2) > Cy or f(z) = Cf Assume that

there exists 2}, 2] — C[ such that f(z}) = Cy, f(2) = C5. 1N f~ ( ) # 0

zel=r <|zl<ri+e r1+£<min{\z\iz€f_l(’)’>}

which gives us that f(I) N~ # 0, a contradiction!

We have arrived at a reduction to one of the following two cases: If f : C\ {0} % C\ {0},
oC* = {0,000}

(a) z—= 0= f(2) >0,z = 00= f(2) > o0

(b) z—o00= f(2) 20, 2z—= 0= f(z) > o0

For each case we ahve



(a) f is analytic also in z =0 = f € Hol(C) and is injective, therefore f(z) = Cz + B and since
£(0) =0 we have f(z) = Cz. In addition we have cry = r2, cR1 = Ra.

(b) % . * =1 ©* thus we have the first case, f(z) = € and % = Ry, R% =1y

onto z

Either way, we have the required result that
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