Complex Function Theory

Mikhail Sodin Arazim ©

January 5, 2016

1 Simpy connected domains

Definition 1. $G \subset \mathbb{C}$ is a simply connected domain if every arc $\gamma : [0,1] \to G$ such that $\gamma(0) = \gamma(1)$ is contractible in G.

Corollary 1. 1. $G \subset \mathbb{C}$ is a simply connected domain \Rightarrow

$$\forall f \in Hol(G). \forall \gamma: I \to G. \gamma(1) = \gamma(0). \int_{\gamma} f(\zeta) d\zeta = 0$$

Which is equivalent to the fact that $\int_{\gamma} f$ depends only on its edges.

2. If $G \subset \mathbb{C}$ is a simply connected domain, then

$$\forall f \in Hol(G). \exists F : F' = f \ (F \in Hol(G))$$

3. $G \subset \mathbb{C}$ is a simply connected domain. Let $f \in Hol(G), f \neq 0$ then there exists $h, g \in Hol(G)$ such that

 $e^g = f(g \text{ is a branch of } \log f)$ $h^2 = f(h \text{ is a branch of } \sqrt{f})$

Proof. We will define $e^c := f(z_0)$ and $g(z) = \int_{\gamma} \frac{f'}{f}(\zeta) d\zeta + c$. Then $g \in Hol(G)$ and $g' = \frac{f'}{f}$

$$\left(f e^{-g} \right)' = f' e^{-g} - f g' e^{-g} = \left(f' - f g' \right) e^{-g} = 0 \Rightarrow f e^{-g} = const$$
$$f(z_0) e^{-g(z_0)} = f(z_0) e^{-c} = 1 \Rightarrow f e^{-g} = 0 \Rightarrow e^g = f$$

Theorem 1 (Riemann theorem). Let $G \subsetneq \mathbb{C}$ be a simply connected domain and $z_0 \in G$ then there exists a biholomorphic map:

$$f: (G, z_0) \xrightarrow[onto]{1-1} (\mathbb{D}, 0) \text{ and } f'(z_0) > 0 (\arg f'(z_0) = 0) (f(z_0) = 0)$$

Proof.

$$g := f \circ f_1^{-1} : (\mathbb{D}, 0) \to (\mathbb{D}, 0) \stackrel{Schwartz}{\Rightarrow} \left| g'(0) \right| \le 1 \Rightarrow \left| f'(z_0) \right| \le \left| f_1'(z_0) \right|$$

If we define $g_1 = f_1 \circ f^{-1} : (\mathbb{D}, 0) \to (\mathbb{D}, 0)$, in a similiar fashion we alve that $|f'(z_0)| \ge |f'_1(z_0)|$. Then |g'(0)| = 1 and again from Schwartz's lemma, $g(w) = e^{i\varphi}w$, therefore $w = f_1(z), f(f_1(w)) = e^{i\varphi}!!!!!! \square$

Theorem 2. Let $G \subsetneqq \mathbb{C}$ be a domain. The following are equivalent:

1. G is simply connected.

- 2. Got all $f \in Hol(G)$ there exists an antiderivative.
- 3. For all $z \in \mathbb{C} \setminus G$ there exists a branch of $\zeta \to \log(\zeta z)$ in G.
- 4. For every closed arc $g: I \to G$, and for all $z \in \mathbb{C} \setminus G$, $ind_{\gamma} = 0$.
- 5. $\mathbb{C} \setminus G$ is connected.¹

Proof. We have already shown that $(1) \Rightarrow (2) \Rightarrow (3)$. $(3) \Rightarrow (4)$

$$ind_{\gamma}(z) = \frac{1}{2\pi} \Delta_{\gamma} \arg(\zeta - z) = 0$$

 $(4) \Rightarrow (3)$

$$ind_{\gamma}(z) = 0 \Rightarrow \int_{\Gamma} \frac{d\zeta}{\zeta - z}$$

Depends only on the edges of $\Gamma: I \to G$ (Cauchy theorem with index).

$$w \mapsto \int_{w_0}^2 \frac{d\zeta}{\zeta - z}$$

 $^{^{1}}X$ is connected if every continuous function $h: X \to \mathbb{Z}$ is constant.