Complex Function Theory

Mikhail Sodin Arazim ©

December 29, 2015

Theorem 1 (Caucy Theorem). Let $f \in Hol(G)$ and $\gamma : I \to G$ be an arc, closed and piecewise C^1 . If for all $z \in \mathbb{C} \setminus G$: $ind_{\gamma}(z) = 0$ then

$$\int_{\gamma} f(\zeta) d\zeta = 0$$

Corollary 1. If $z \in G$ then

$$f(z) \cdot ind_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Note 1 (Cycle). A finite sum of sums $\gamma = \sum_{finite} n_j \gamma_j$ where each γ_j is a closed arc and $n_j \in \mathbb{N}$. When going from right to left, we add one. When moving from left to right, remove one.

Theorem 2. γ is a piecewise C^1 arc and $f \in C(\gamma)$, then

$$F(z) := \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

and $F \in Hol(\mathbb{C} \setminus \gamma), F(\infty) = 0.$

0.1 Standard assumptions

The following are referred to as the standard assumptions

- 1. $f \in Hol(\mathfrak{D})$.
- 2. γ enters \mathfrak{D} at ζ_1 and γ exits \mathfrak{D} at ζ_2 .
- 3. $\gamma 0 = \gamma \cap \mathfrak{D}$ divides \mathfrak{D} into \mathfrak{D}_{-} and \mathfrak{D}_{+} (\mathfrak{D}_{+} is on the left of γ_{0}).
- 4. $\mathfrak{D} \cap (\gamma \setminus \gamma_0) = \emptyset$

Defining

$$F_{\pm} = F\Big|_{\mathfrak{D}_{\pm}}$$

And γ_{-} is the right side of \mathfrak{D} and γ_{+} is the left side of \mathfrak{D} .

Note 2. F_{\pm} has a analytic continuation on \mathfrak{D} .

$$F_{+}(z) := \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

 $z \in \mathfrak{D}_+ 12\pi i \left[\int_{\gamma \setminus \gamma_0} + \int_{\gamma_0} \right] \frac{f(\zeta)}{\zeta - z} d\zeta$ and the RHS is analytic in \mathbb{C} . By Cauchy we have

$$\int_{\gamma_0} \frac{f(\zeta)}{\zeta - z} d\zeta = 0$$

Theorem 3.

$$F_{+}(z) - F_{-}(z) = f(z)$$

Proof.

$$F_{+}(z) - F_{-}(z) = \frac{1}{2\pi i} \left[\int_{\gamma_{-}} - \int_{\gamma_{+}} \right] \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial \mathfrak{D}} \frac{f(\zeta)}{\zeta - z} d\zeta = f(z)$$

Theorem 4. Let $\gamma : [0,1] \to \mathbb{C}$ be a simple closed arc, then $\Omega_0 \cup \Omega_1 = \mathbb{C} \setminus \gamma$, $\partial \Omega_0 = \partial \Omega_1 = \gamma$ are two disjoint domain were Ω_1 is unbounded (the "outside") and Ω_0 is bounded (the "Inside").

proof for C^1 arcs. Since γ is compact, we can write $\gamma \subset \bigcup_{finite} \mathfrak{D}_j =: u$. and $\mathbb{C} \setminus \gamma = \bigcup_{0 \leq j \leq N} \Omega_j$ is open and $N < \infty$ (Ω_j are the components).

• If $N \leq 2$ then there exists an arc in u that begins in $\mathfrak{D}_j^{\pm} \setminus \gamma_-$ and ends at $\mathfrak{D}_k \setminus$

!!!!!!!!

1 Homotopy

Let $\gamma_0: [0,1] \to \mathbb{C}, \ \gamma_1: [0,1] \to \mathbb{C}, \ \gamma_0(0) = \gamma_1(0) = a \text{ and } \gamma_0(1) = \gamma_1(1) = b. \ Q = [0,1] \times [0,1] !!!$

Definition 1. $G \subset \mathbb{C}$ is a domain. $\gamma_0, \gamma_1 : [0,1] \to G$. $\gamma_0(0) = \gamma_1(0) \gamma_0(1) = \gamma_1(1)$. We will say that $\gamma_0 \sim_G \gamma_1$ if there exists a homotopy $\gamma : Q \to G$ such that $\gamma(t,0) = \gamma_0(t)$ and $\gamma(t,1) = \gamma_1(t)$

Theorem 5 (Homotopical form). If $f \in Hol(G)$ and $\gamma_0 \sim_G \gamma_1$, then

$$\int_{\gamma_0} f = \int_{\gamma_1} f$$

Corollary 2. $\gamma: [0,1] \to G$, is $\gamma \sim_G id$ (id: $[0,1] \to \{a\}$) meaning that γ is contractible then

$$\int_{\gamma} f(\zeta) d\zeta = 0$$

Lemma 1 (Continuous logarithm). $h \in C(Q), h : Q \to \mathbb{C} \setminus \{0\}$ then there exists a $\phi \in C(Q)$ such that $h = e^{\phi}$.

Lemma 2. If $\gamma_0 \sim_G \gamma_1$, then for all $z \in \mathbb{C} \setminus G$

$$ind_{\gamma_1-\gamma_0}(z)=0$$

Proof. $\gamma_0 \sim_G \gamma_1 \Rightarrow \exists \gamma : Q \to G$ where γ is a homotopy from $\gamma_0 \to \gamma_1$. If $z \in \mathbb{C} \setminus G \Rightarrow \gamma(w) \neq z$ fr some $w = (t, s) \in Q$

$$h(w) = \gamma(w) - z \neq 0 \Rightarrow \exists \phi \in C(Q) : \gamma(w) - e^{\phi(w)}$$

Let $\zeta \in \gamma_1 : \zeta - z = \gamma_1(w) - z = e^{\phi(w)}$, for w = (t, 1). We have

$$ind_{\gamma_1 - \gamma_0}(z) = \frac{1}{2\pi} \left[\triangle \arg_{\zeta \in \gamma_1}(\zeta - z) - \triangle \arg_{\zeta \in \gamma_0}(\zeta - z) \right] = \frac{1}{2\pi} \Im \left[\left(\phi(1, 1) - \phi(0, 1) \right) - \left(\phi(1, 0) - \phi(0, 0) \right) \right] = 0$$

Defining $\gamma_s = \gamma(t, s)$. The function $s \mapsto ind_{\gamma_s - \gamma_0}(z)$ is continuous on s since in a similar action to before, it is equal to the imaginary part of four items. Since this is a continuous function we have that $ind_{\gamma_s - \gamma_0}(z) = const$.

Definition 2. LEt $G \subset \mathbb{C}$, it is called a simply-connected domain if every closed arc $\gamma : [0,1] \to G$ is contractible.

Example 1. 1. $\mathfrak{D}(z, \rho) = \{\zeta : |\zeta - z| < \rho\}$

2. G is a convex domain.

Proof. A homotopy for a convex domain is $\gamma(t,s) := (1-s)\gamma_0(t) + s\gamma_1(t)$ and $\gamma \in C(Q)$. $\gamma_0(0) = \gamma_1(0) = a$, $\gamma_0(1) = \gamma_1(1) = b$.