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Theorem 1 (Caucy Theorem). Let f ∈ Hol(G) and γ : I → G be an arc, closed and piecewise C1. If
for all z ∈ C\G : indγ(z) = 0 then ∫

γ
f(ζ)dζ = 0

Corollary 1. If z ∈ G then

f(z) · indγ(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

Note 1 (Cycle). A finite sum of sums γ =
∑

finite njγj where each γj is a closed arc and nj ∈ N.

When going from right to left, we add one. When moving from left to right, remove one.

indγ(z) :=
∑

njindγj (z)∫
γ
f(ζ)dζ =

∑
nj

∫
γj

f(ζ)dζ

Theorem 2. γ is a piecewise C1 arc and f ∈ C(γ), then

F (z) :=
1

2πi

∫
γ

f(ζ)

ζ − z
dζ
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and F ∈ Hol(C\γ), F (∞) = 0.

0.1 Standard assumptions

The folowing are referred to as the standard assumptions

1. f ∈ Hol(D.

2. γ enters D at ζ1 and γ exits D at ζ2.

3. γ0 = γ ∩D divides D into D− and D+ (D+ is on the left of γ0).

4. D ∩ (γ\γ0) = ∅

Defining

F± = F
∣∣∣
D±

And γ− is the right side of D and γ+ is the left side of D.

Note 2. F± has a analytic continuation on D.

F+(z) :=
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

z∈D+12πi
[∫
γ\γ0 +

∫
γ0

]
f(ζ)
ζ−z dζand the RHS is analytic in C. By Cauchy we have∫

γ0

f(ζ)

ζ − z
dζ = 0

Theorem 3.
F+(z)− F−(z) = f(z)

Proof.

F+(z)− F−(z) =
1

2πi

[∫
γ−

−
∫
γ+

]
f(ζ)

ζ − z
dζ =

1

2πi

∫
∂D

f(ζ)

ζ − z
dζ = f(z)

Theorem 4. Let γ : [0, 1] → C be a simple closed arc, then Ω0 ∪ Ω1 = C\γ, ∂Ω0 = ∂Ω1 = γ are two
disjoint domain were Ω1 is unbounded (the “outside”) and Ω0 is bounded (the “Inside”).

proof for C1 arcs. Since γ is compact, we can write γ ⊂ ∪finiteDj =: u. and C\γ = ∪0≤j≤NΩj is open
and N <∞ (Ωj are the components).

• If N ≤ 2 then there exists an arc in u that begins in D±j \γ− and ends at Dk\

!!!!!!!!
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1 Homotopy

Let γ0 : [0, 1]→ C, γ1 : [0, 1]→ C, γ0(0) = γ1(0) = a and γ0(1) = γ1(1) = b. Q = [0, 1]× [0, 1]!!!

Definition 1. G ⊂ C is a domain. γ0, γ1 : [0, 1] → G. γ0(0) = γ1(0) γ0(1) = γ1(1). We will say that
γ0 ∼G γ1 if there exists a homotopy γ : Q→ G such that γ(t, 0) = γ0(t) and γ(t, 1) = γ1(t)

Theorem 5 (Homotopical form). If f ∈ Hol(G) and γ0 ∼G γ1, then∫
γ0

f =

∫
γ1

f

Corollary 2. γ : [0, 1]→ G,is γ ∼G id (id : [0, 1]→ {a}) meaning that γ is contractible then∫
γ
f(ζ)dζ = 0

Lemma 1 (Continuous logarithm). h ∈ C(Q), h : Q → C\ {0} then there exists a φ ∈ C(Q) such that
h = eφ.

Lemma 2. If γ0 ∼G γ1, then for all z ∈ C\G

indγ1−γ0(z) = 0

Proof. γ0 ∼G γ1 ⇒ ∃γ : Q → G where γ is a homotopy from γ0 → γ1. If z ∈ C\G ⇒ γ(w) 6= z fr some
w = (t, s) ∈ Q

h(w) = γ(w)− z 6= 0⇒ ∃φ ∈ C(Q) : γ(w)− eφ(w)

Let ζ ∈ γ1 : ζ − z = γ1(w)− z = eφ(w), for w = (t, 1). We have

indγ1−γ0(z) =
1

2π

[
4 argζ∈γ1(ζ − z)−4 argζ∈γ0(ζ − z)

]
=

1

2π
=
[(
φ(1, 1)− φ(0, 1)

)
−
(
φ(1, 0)− φ(0, 0)

)]
= 0

Defining γs = γ(t, s). The function s 7→ indγs−γ0(z) is continuous on s since in a similar action to
before, it is equal to the imaginary part of four items. Since this is a continuous function we have that
indγs−γ0(z) = const.

Definition 2. LEt G ⊂ C, it is called a simply-connected domain if every closed arc γ : [0, 1] → G is
contractible.

Example 1. 1. D(z, ρ) =
{
ζ : |ζ − z| < ρ

}
2. G is a convex domain.

Proof. A homotopy for a convex domain is γ(t, s) := (1 − s)γ0(t) + sγ1(t) and γ ∈ C(Q). γ0(0) =
γ1(0) = a ,γ0(1) = γ1(1) = b.

!!!!!!!!!!!!!!!
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