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1 Isolated singularities
Continuing from last lesson
Definition 1. Let f € Hol (U}) then A is an isolated singularity.!
1. a is called a removable singularity id there exists a F' € Hol (u,) and F' = f in u},

2. ais a pole of f if limzﬁa‘f(z)‘ = 00

Theorem 1 (Removable singularity). Let f € Hol (ug) and is bounded there. (IM sup,.|f| < M) then

a s a removable singularity.
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Proof. Using the Taylor expansion for f , f(z) = >, .z an2" wherea, =
to check that for alln € N, a_,, Zo.
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Since p | 0 we have that the equality holds and f(2) = 3", 5 an (2 —a)" O

Note 1. We will define a My (p) = maﬂz_a‘:p‘f(zﬂ. We will assume that lim, o p™/(p) = 0, then a is a
isolated singularity.

1.1 Poles

a is a pole of f if limz%a|f(z)‘ = oo and if we define a function g := % then g € Hol(u;;),‘g(z)‘ 270 =

g € Hol(uy,)
e ¢ is an isolated singularity of g by 77.
e g(a) =0= g(z) = h(z)(z —a)™, h € Hol(u,) and h(a) # 0, where m is the multiplicity of m of g,
ha) = 200D = (7)) = L9 g =1, € Hol(us),q(a) # 0

m:

a is a pole = f(z) = 9Z) 1 is the multiplicity of f at point a = flz)=> an (z —a)"

(z—a)™> n>-—m

!Using the markings from Calculus 1 where we denote u, as an area of a and U} = U,\ {a} is a punctured area of a.



1.2 Essential singularities

An essential singularity is neither a pole or an isolated singularity.

Theorem 2 (Sokhotski-Casoratti-Wejerstrass). If a is an essential singularity then for every punctured
neighborhood u}, such that f € Hol (u}), f(ul) =C

a

Proof. WE will assume that dist(f(u}),w) > 6 (< w ¢ f(u}), g(z) == f(z%w

Since g inHol(u}) and [g| < % in u}, by the first theorem we have that a is an isolated singularity of

9(g € Hol(ua))-
Now, since f(z) = w + ﬁ then

e g(a) = 0= ais a pole of f.
e g(a) # 0= a is an isolated singularity of f

And thus, we have arrived at a contradiction to the fact that a is an essential singularity. O

Now we will look at punctured neighborhood of oo, {|z| > R} (Rislarge). Then, if ' € Hol <{|z| > R}) &
1(Q) = F(}), f € Hol ({0)¢] < R}).

Definition 2. F'is analytic in oo if f is analytic at ( = 0 and F has a pole at oo if f has a pole at 0.

Corollary 1. 1. f € Hol (@) = F = const ( F is analytic at oo = bounded in C Liouyitie f = const)

2. Let F € Hol(C) and has a pole at oo < F' is a polynomial.

Proof. In the first direction, let F' be a polynomial,

F(z) = f(%) - Y a C)n =Y caten =a-n

n>—m n<m

In the other direction, if F' is analytic at 0 then ¢, = 0 for all n < 0 leading us to f(z) =

n
Zogngm Cnz o

3. Let F € Hol (C’\ {ay,as,.. .,aN}) where ay,...,an are poles of F'. Then F 1is a rational function

F = 5 and P, Q are polynomials. We will look at f1 (z) —F (2) (z —a1)™ ... (z —an—1)"V"' where
m; is the order of the pole at the point a;.

e f1eH(C)=F =P
e 0, f1 has a pole at 0o F(z) =

2 Residues
Let f € Hol (U}) and D (a,¢) C ug.

1

2mi |z—al|=¢

resqf = f(z)dz =c_y



Theorem 3 (Cauchy). Let G C C be a good domain, a1, ...,an € G andlet f € Hol (G\ {aq,... ,aN}) ,f e
C (G\{a1,...,an}) then

N
f(Z2)dz = 2mi Z resa; f
oG o

Proof. Taking ¢ < min; dist (aj, 8G) and € < min;; (’ai — aj‘), then we will define

N
G.=G\|JD(a5,¢)

j=1
N
Hol (G.)NC (G. dz=0= dz — d
feHO(G)NC(G) = [ )z [ Ja: ;/@D(W)fz
]

The last value is equal to the residue at each point a;, meaning that these are important, we will look
at how to find them.

Corollary 2. 1. If f = %, o, € Hol (ug) and v has a simple zero at z = a (multiplicity = 1) =

z
redof = 55
Proof.
. . Pz ¥
c1(f) = lim (2 — a) f(2) = lim w<z>(—w)<a> I
(z—a)
Where the second equality is because ¢(a) = 0. O
2. f(z) = (;i(;))m, v € Hol (ug), then
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3. g€ Hol(G),g(a) =0 and f = %/.
g(a) =0, g(z) = (z—a)" h(z), h € Hol (G), h(a) #0

%/ is analytic at a, therefore

h
= — = - = —
f(2) z—a+h Tesag m
Note 2. hz) ,
< g
g(z) = oo = resg— = —m
. f(z) =tanz, 2 = § = km,k € Z. Then
sin zy, sin z
T A = -l= cos z
- k
T n
tanz = chz” an = ¢y, <2>
n>0

We will define the odd function f as follows:

T2
f =tan -5 = Z an2" = E agny122 L

n>0 n>0

Setting z = £1, res11f = —1

z—1 z4+1 1—22
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And of course,
¢ TZ 4 z +g(2)
an — = — z
2 1—. 9

Since g € Hol ({\z| < 5}) 9(2) = >0 don122" T and agny1 = 2 + dopt1 = 2+ 0(1),n — 00
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If we have a function f that is analytic in a punctured neighborhood of a, and g € Hol(uy), g : up l;tl>
onto

Uuq, where g(z) = a. In addition we will define a function h(z) = (f o g) (z) and h € Hol (uj). If we look
at the residue of A at the point b

1 1
resph = / h(w)dw # resq,f = / f(2)dz
211 |w—>b|=e 211 |z—al=p (
However if we change the variable as follows:
/ , 27l 1
flotw)g/widw= [ [ fdz= o [ f) = resaf
fw—bl== 1 Jg({w-bl=2}) 270 Szl =p

Then we get
resqof =resy(fog)d



