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1 Isolated singularities

Continuing from last lesson

Definition 1. Let f ∈ Hol (U∗a ) then A is an isolated singularity.1

1. a is called a removable singularity id there exists a F ∈ Hol (ua) and F = f in u∗a

2. a is a pole of f if limz→a
∣∣f(z)

∣∣ =∞

Theorem 1 (Removable singularity). Let f ∈ Hol (u∗a) and is bounded there. (∃M supu∗a |f | < M) then
a is a removable singularity.

Proof. Using the Taylor expansion for f , f(z) =
∑

n∈Z anz
n wherean = 1

2πi

∫
|z−a|=ρ

f(Z)
(z−a)n+1dz. We want

to check that for all n ∈ N, a−n
??
= 0.

|a−n| =

∣∣∣∣∣ 1

2πi

∫
|z−a|=ρ

f(z)(z − a)n−1dz

∣∣∣∣∣ ≤M 1

2π
ρn−1 · 2πρ = Mρn]

Since ρ ↓ 0 we have that the equality holds and f(z) =
∑

n≥0 an (z − a)n

Note 1. We will define a Mf (ρ) = max|z−a|=ρ
∣∣f(z)

∣∣. We will assume that limρ↓0 ρ
Mf (ρ) = 0, then a is a

isolated singularity.

1.1 Poles

a is a pole of f if limz→a
∣∣f(z)

∣∣ =∞ and if we define a function g := 1
f then g ∈ Hol(u∗a),

∣∣g(z)
∣∣ z→a−−−→ 0⇒

g ∈ Hol(ua)

• a is an isolated singularity of g by ??.

• g(a) = 0⇒ g(z) = h(z)(z − a)m, h ∈ Hol(ua) and h(a) 6= 0, where m is the multiplicity of m of g,

h(a) = g(m)(a)
m! ⇒ f(Z) = r(z)

(z−a)m , q = 1
n , q ∈ Hol(ua), q(a) 6= 0

a is a pole ⇒ f(z) = q(z)
(z−a)m , m is the multiplicity of f at point a⇒ f(z) =

∑
n≥−m an (z − a)n

1Using the markings from Calculus 1 where we denote ua as an area of a and U∗a = Ua\ {a} is a punctured area of a.
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1.2 Essential singularities

An essential singularity is neither a pole or an isolated singularity.

Theorem 2 (Sokhotski-Casoratti-Wejerstrass). If a is an essential singularity then for every punctured
neighborhood u∗a such that f ∈ Hol (u∗a), f(u∗a) = C

Proof. WE will assume that dist(f(u∗a), w) ≥ δ
(
⇔ w /∈ f(u∗a

)
, g(z) := 1

f(z)−w .

Since g inHol(u∗a) and |g| ≤ 1
δ in u∗a, by the first theorem we have that a is an isolated singularity of

g(g ∈ Hol(ua)).
Now, since f(z) = w + 1

g(z) then

• g(a) = 0⇒ a is a pole of f .

• g(a) 6= 0⇒ a is an isolated singularity of f

And thus, we have arrived at a contradiction to the fact that a is an essential singularity.

Now we will look at punctured neighborhood of∞,
{
|z| > R

}
(R is large). Then, if F ∈ Hol

({
|z| > R

})
⇔

f(ζ) = F (1ζ ), f ∈ Hol
({

0|ζ| < R
})

.

Definition 2. F is analytic in ∞ if f is analytic at ζ = 0 and F has a pole at ∞ if f has a pole at 0.

Corollary 1. 1. f ∈ Hol
(
Ĉ
)
⇒ F = const ( F is analytic at ∞⇒ bounded in C

Liouville⇒ f = const)

2. Let F ∈ Hol(C) and has a pole at ∞⇔ F is a polynomial.

Proof. In the first direction, let F be a polynomial,

F (z) = f(
1

z
) =

∑
n≥−m

an

(
1

z

)n
=
∑
n≤m

cnz
n, cn = a−n

In the other direction, if F is analytic at 0 then cn = 0 for all n < 0 leading us to f(z) =∑
0≤n≤m cnz

n

3. Let F ∈ Hol
(
Ĉ\ {a1, a2, . . . , aN}

)
where a1, . . . , aN are poles of F . Then F is a rational function

F = P
Q and P,Q are polynomials. We will look at f1 (z)−F (z) (z − a1)m1 . . . (z − aN−1)mN−1 where

mj is the order of the pole at the point aj.

• f1 ∈ Hol(C)⇒ F1 = P

• δ, f1 has a pole at ∞ F (z) = P (z)∏N−1
j=1 (z−aj)mj

0→∞.

2 Residues

Let f ∈ Hol (U∗a ) and D̄ (a, ε) ⊂ ua.

resaf :=
1

2πi

∫
|z−a|=ε

f(z)dz = c−1
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Theorem 3 (Cauchy). Let G ⊂ C be a good domain, a1, . . . , aN ∈ G and let f ∈ Hol
(
G\ {a1, . . . , aN}

)
, f ∈

C
(
Ḡ\ {a1, . . . , aN}

)
then ∫

∂G
f(Z)dz = 2πi

N∑
j=1

resajf

Proof. Taking ε < minj dist
(
aj , ∂G

)
and ε < mini 6=j

(∣∣ai − aj∣∣), then we will define

Gε = G\
N⋃
j=1

D̄
(
aj , ε

)

f ∈ Hol (Gε) ∩ C
(
Ḡε
)
⇒
∫
∂Gε

f(z)dz = 0 =

∫
∂G
fdz −

N∑
j=1

∫
∂D(aj ,ε)

fdz

The last value is equal to the residue at each point aj , meaning that these are important, we will look
at how to find them.

Corollary 2. 1. If f = ϕ
ψ , ϕ, ψ ∈ Hol (ua) and ψ has a simple zero at z = a (multiplicity = 1) ⇒

redaf =
ϕ(z)

ψ′(a)

Proof.

c−1(f) = lim
z→a

(z − a) f(z) = lim
z→a

ϕ(z)
ψ(z)−ψ(a)

(z−a)

=
ϕ

ψ′(a)

Where the second equality is because ϕ(a) = 0.

2. f(z) = ϕ(z)
(z−a)m , ϕ ∈ Hol (ua), then

c−1 (f) =
ϕ(m−1(a)

(m− 1)!

Proof.

ϕ(z) =
∑
n≥0

ϕ(n)(a)

n!
(z − a)n

f(z) =
∑
n≥0

ϕ(n)(a)

n!
(z − a)n−m

Example 1. 1.

f(z) =
z

(z − 1)(z − 2)2

res1f =
z

(z − 2)2

∣∣∣
z=1

=
1

1
= 1

res2f =

(
z

z − 1

)′
z=2

=

(
1 +

1

z − 1

)′
z=2

= − 1

(z − 1)2

∣∣∣
z=2

= −1
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2.

f(z) =
g(z)

1 + zn
, g ∈ Hol(C), ωn = −1

resωf =
g(ω)

nωn−1
= − 1

n
ωg(ω)

ωn−1 =
1

ω
ωn = − 1

ω

3. g ∈ Hol(G), g(a) = 0 and f = g′

g .

g(a) = 0, g(z) = (z − a)m h(z), h ∈ Hol (G) , h(a) 6= 0

h′

h is analytic at a, therefore

f(z) =
m

z − a
+
h′

h
⇒ resa

g′

g
= −m

Note 2.

g(z) =
h(z)

(z − a)m
⇒ resa

g′

g
= −m

4. f(z) = tan z, zk = π
2 = kπ, k ∈ Z. Then

reszk tan z =
sin zk
− sin zk

= −1 =
sin z

cos z

tan z =
∑
n≥0

cnz
n an = cn

(
π

2

)n
We will define the odd function f as follows:

f = tan
πz

2
=
∑
n≥0

anz
n =

∑
n≥0

a2n+1z
2n+1

Setting z = ±1, res±1f = −1

g(z) = f(z)− (−1)

(
1

z − 1
+

1

z + 1

)
= f(z)− 2z

1− z2

tan
πz

2
=

sin πz
2

cos πz2
= − 2

π

And of course,

tan
πz

2
=

4

π
+

z

1− z
+ g(z)

Since g ∈ Hol
({
|z| < ε

})
g(z) =

∑
n≥0 d2n+1z

2n+1 and a2n+1 = 4
π + d2n+1 = 4

π + o(1), n→∞

1

ε
= lim

n→∞
|d2n+1|

1/2n+1

d2n+1 → 0, ∀A < ε,|d2n+1|CA−2n
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If we have a function f that is analytic in a punctured neighborhood of a, and g ∈ Hol(ub), g : ub
1−1−−→
onto

ua, where g(z) = a. In addition we will define a function h(z) = (f ◦ g) (z) and h ∈ Hol
(
u∗b
)
. If we look

at the residue of h at the point b

resbh =
1

2πi

∫
|w−b|=ε

h(w)dw 6= resaf =
1

2πi

∫
|z−a|=ρ

f(z)dz

However if we change the variable as follows:∫
|w−b|=ε

f(g(w))g′(w)dw =

∫ 2π1

1

∫
g
(
{|w−b|=ε}

) f(z)dz =
1

2πi

∫
|z|=ρ

f(z) = resaf

Then we get
resaf = resb (f ◦ g) g′
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