Complex Function Theory

Mikhail Sodin Arazim ©

December 10, 2015

1 Corollaries from the Cauchy equation

Reminder 1. If $G \subset \mathbb{C}$ is a good domain, $\Gamma = \partial G, z \in G$ and $g \in Hol(G) \cap C(G\overline{G})$ then

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Lemma 1. Let $\gamma: I \to \mathbb{C}$ be piecewise C^1 , regular and $\varphi \in C(\gamma)$. We will define

$$F(z) := \int_{\gamma} \frac{y(\zeta)}{\zeta - z} d\zeta$$

Then $F \in Hol(\mathbb{C}\backslash\gamma)$, $F \in C^{\infty}_{\mathbb{C}}(\mathbb{C}\backslash\gamma)$ $z \in \mathbb{C}\backslash\gamma$, then:

$$F^{(n)}(z) = n! \int_{\gamma} \frac{\varphi(\zeta)d\zeta}{(\zeta - z)^{n+1}}$$

Proof. We will set $z_0 \in \mathbb{C} \setminus \gamma$, $\delta := dist(z_0, \gamma)$ meaning that $\delta > |z - z_0| (\Rightarrow z \in \mathbb{C} \setminus \gamma)$

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{n \ge 0} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}$$

Using the Majorant theorem from Calculus 2 we can prove that the series converges uniformly, and indeed:

$$\zeta \in \gamma \qquad \left| \frac{z - z_0}{\zeta - z_0} \right| < 0$$

Thus:

$$\frac{\varphi(\zeta)}{\zeta - z} = \sum_{n > 0} (z - z_0)^n \frac{\varphi(\zeta)}{(\zeta - z_0)^{n+1}}$$

Setting

$$F(z) = \sum_{n>0} (z - z_0)^n \int_{\gamma} \frac{\varphi(z_0)}{(\zeta - z_0)^{n+1}}$$

$$F \in Hol\left(\left\{z: |z - z_0| < \delta\right\}\right)$$

$$\frac{F^{(n)}(z_0)}{n!} = \int_{\gamma} \frac{\varphi(\zeta)d\zeta}{(\zeta - z_0)^{n+1}}$$

Corollary 1. 1. $f \in C_{\mathbb{C}}^{\infty}(G)$ and

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|\zeta - z| = \rho} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Where $\rho < dist(z, \partial G)$

2.

$$f(w) = \sum_{n>0} \frac{f^{(n)}(z)}{n!} (w-z)^n \qquad |w-z| < dist(z, \partial G)$$

Corollary 2 (Morera theorem). Let $f \in C(G)$ such that for every closed triangle $T \subset G$ for which $\int_{\partial T} f dz = 0$ then $f \in Hol(G)$

Proof. There exists a previous function $F \in Hol(G)$ such that F' = f. From the first corollary, $f \in Hol(G)$.

Corollary 3. Let $G \subset C$ be a domain and $I \subset G$ is a closed interval. If $f \in Hol(G \setminus I)$ and is continuous in G then $f \in Hol(G)$

Corollary 4. Defining $\mathcal{D} = \{z : |z - a| < \rho\}$ we have the Cauchy inequalities:

$$F \in Hol\left(\mathcal{D}\left(a,\rho\right)\right) \cap C\left(\hat{\mathcal{D}}\left(a,\rho\right)\right) \Rightarrow \left|f^{(n)}(a)\right| \leq \frac{n!}{\rho^n} \cdot \max_{\partial \mathcal{D}\left(a,\rho\right)} |f|$$

Proof.

$$\left| f^{(n)}(a) \right| = \left| \frac{n!}{2\pi i} \int_{\partial \mathcal{D}(a,\rho)} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \right| \le \frac{n!}{2\pi} \max_{\zeta \in \partial \mathcal{D}(a,\rho)} \frac{\left| f(\zeta) \right|}{\left| \zeta - a \right|^{n+1}} \cdot \pi \rho$$

Corollary 5 (Liouville theorem). Let $f \in Hol(\mathbb{C})$ and bounded $\Rightarrow f \equiv const$

Proof. $z \in \mathbb{C}$

$$|f'(z)| \le \frac{1}{\rho} \underbrace{\max_{\partial \mathcal{D}(z,\rho)} |f|}_{\text{op}(z,\rho)} \Rightarrow f'(z) = 0 \Rightarrow f \equiv const$$

Corollary 6 (Fundamental theorem of algebra). Let $p \in \mathbb{C}[z]$ be a polynomial, $\deg P \geq 1$ then there exists a point $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$

Proof. WE will assume by contradiction that $p \neq 0$ in $\mathbb{C} \Rightarrow \frac{1}{p} \in Hol(\mathbb{C})$.

$$|p(z)| \xrightarrow{z \to \infty} \infty \Rightarrow \left| \frac{1}{p(z)} \right| \xrightarrow{z \to \infty} = 0$$

Therefore $\frac{1}{p}$ is bounded in \mathbb{C} and as a result is constant, $p \equiv const \Rightarrow degp = 0$.

2 Uniqueness theorems

Theorem 1. Let $f \in Hol(G)$ and $\exists a \in G$ such that $f^{(m)}(a) = 0, m \ge 0$ then $f \equiv 0$.

Proof.

$$Z = \left\{ z \in G : \forall m \ge 0 \, f^{(m)}(z) = 0 \right\}$$

- 1. $z \neq \emptyset$.
- 2. Z is open. $f|_{\mathcal{D}(z,\delta)} \equiv 0$ (Taylor expansion around z).
- 3. $G \setminus Z$ is open (continuity of $f^{(m)}$).

 $z \in G \setminus Z \Rightarrow \exists m \geq 0 : f^{(m)}(z) \neq 0 \Rightarrow f^{(m)} \neq 0$ in a neighborhood of z. By connectivity of G, he have Z = G

Claim 1. $f(z) = f'(z) = \cdots = f^{(m-1)}(a) = 0 \Rightarrow f(Z) = (z-a)^m g(z)$, where

$$g(a) = \frac{f^{(m)}(a)}{m!}, g \in Hol(Neighborhood of a)$$

Proof.

$$f(z) = \sum_{n \ge m} \frac{f^{(n)}(a)}{n!} (z - a)^n = (z - a)^m \sum_{n \ge 0} \frac{f^{(n+m)}(a)}{(n+m)!} (z - a)^n$$

Definition 1 (multiplicity). The multiplicity of zero at a point a is $n \in \mathbb{Z}_+$ such that $f(a) = \cdots = f^{(n-1)}(a) = 0$ $f^{(n)} \neq 0$ e.g. $m_f(a) = \min \left\{ n \in \mathbb{Z}_+ : f^{(n)}(a) \neq 0 \right\}$.

Note 1. $f(a) \neq 0 \Rightarrow m_f(a) = 0, m_f(a) = \infty \Rightarrow f \equiv 0$

Theorem 2. Let $\{z_n\} \subset G$ converges to $a \in G$. We will assume that $f(z_n) = 0$ then $f \equiv 0$.

Proof. '? $f^{(m)}(a) = 0$? We will prove with induction on m. For m = 0 it is obvious (continuity of f).

Induction step: $m-1 \Rightarrow m$ $f(a) = f'(a) = \cdots = f^{(m-1)}(a) \Rightarrow g(z) = \frac{f(z)}{(z-a)^m}$ is analytic in G. $f(z_n) = 0 \Rightarrow g(z_n) = 0$, thus by continuity of g we have $g(a) = 0 \Rightarrow f^{(m)}(a) = 0$.

Corollary 7. If $f_1(z_n) = f_2(z_n)$ for some $\{z_n\} \subset G$ then $f_1 = f_2$ in G.

Theorem 3 (Weierstrauss). If $\{f_n\} \subset Hol(G)$ uniformly converges locally then $\lim_n f_n = f \in Hol(G)$ and for all $j \geq 0$ $f_n^{(j)} \stackrel{u}{\to} f^{(j)}$ locally.

Proof. Setting K, $\delta = \frac{1}{2} dist(K, \partial G) > 0$ $K_{+\delta} = \{z : dist(z, K) \leq \delta\} \subset G$ is compact.

1. $f \in Hol(G)$: $T \subset G$ is a closed triangle, $\partial T \subset G$ is compact.

$$\int_{\partial T} f_n dz = 0 \Rightarrow \int_{\partial T} f dz = 0 \Rightarrow f \text{ is analytic in } G$$

3

2. $f^{(j)} \xrightarrow{u} f^{(j)}$ in K. Let $z \in K$

$$\left| f_n^{(j)}(z) - f^{(j)}(z) \right| \leq \frac{j!}{\delta^j} \max_{|\zeta - z| = \delta} \left| f_n\left(\zeta\right) - f\left(\zeta\right) \right| \stackrel{\text{Cauchy}}{\leq} \frac{j!}{\delta^j} \max_{K + \delta} \left| f_n - f \right| \xrightarrow{n \to \infty} 0$$

$$\max_K \left| f_n^{(j)} - f^{(j)} \right| \leq \frac{j!}{\delta^j} \max_{K + \delta} \left| f_n - f \right| \Rightarrow f_n^{(j)} \stackrel{u}{\to} f^{(j)} \text{ (in } K)$$

An example of a function that is not zero in C^{∞} but the multiplicity of 0 at 0 is ∞ in \mathbb{R} :

$$f(x) = \begin{cases} e^{\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Problem 1. $I = [a, b] \subset \mathbb{R}$ $f : I \to \mathbb{C}$ such that for all $n \ge 0$, $\max_{I} \left| f^{(n)} \right| \le C^n n$ and C > 0 then there exists a domain $I \subset G$ such that $f \in Hol(G)$.

Problem 2 (S. bernstein). $f:[0,1)\to\mathbb{R}, f\in C^{\infty}(I)$ and assume that $f^{(n)}(x)\geq 0$ for all $x\in[0,1), n\in\mathbb{Z}_+$ then

$$f \in Hol\left(\left\{|z| < 1\right\}\right)$$