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1 Corollaries from the Cauchy equation

Reminder 1. If G C C is a good domain, I' = dG, z € G and g € Hol (G) N C (GG) then

F6) = p 2

2w Jp =2

Lemma 1. Let y: I — C be piecewise C', regular and o € C (). We will define
y (©)
F(z):= / ==2d¢
v G2
Then F € Hol (C\n) ,F € CZ (C\v) z € C\y, then:

F(”)(z) _ n!/ : ©(¢)d¢
v

(=2
Proof. We will set zg € C\, & := dist (20,7) meaning that § >|z — 29| (= z € C\)

[ S S (# = 20)"
il el = Dy

(20  n>0 <0

Using the Majorant theorem from Calculus 2 we can prove that the series converges uniformly, and indeed:

= Z — zz <0
Thus:
e
Setting :

F e Hol ({z:|z—zo\ <5}>




Corollary 1. 1. f € CZ (G) and

f(n)(z) — L' LC)CZC

270 Jfig—z)=p (¢ — 2)"F1

Where p < dist (z,0G)

() (4
flw)=>" / n'( )(w — 2" |w— 2| < dist (z,0Q)

Corollary 2 (Morera theorem). Let f € C(G) such that for every closed triangle T C G for which
Jop fdz =0 then f € Hol(G)

Proof. There exists a previous function F' € Hol(G) such that F' = f. From the first corollary, f €
Hol(G). O

Corollary 3. Let G C C be a domain and I C G is a closed interval. If f € Hol (G\I) and is continuous
in G then f € Hol (GQ)

Corollary 4. Defining D = {z Hz—al < p} we have the Cauchy inequalities:

F € Hol (D (a,p)) ﬂC(ﬁ(a,p)) é‘f(")(a)‘ < . max |f]|

p" 9D(a,p)
Proof.
! | (O]
(n)a‘:”/ (O N 1 R ¥(S| N
‘f 1= |2ri oD(a,p) (€ —a)" °|= 2 ccoD(an) | — ™ "
O
Corollary 5 (Liouville theorem). Let f € Hol (C) and bounded = f = const
Proof. z € C
<C=supdf]|
()] <= T 7] = /() = 0= f = const
z — max z) = = cons
"~ P ID(zp)
O

Corollary 6 (Fundamental theorem of algebra). Let p € Clz] be a polynomial, deg P > 1 then there
exists a point zy € C such that p(zp) =0

Proof. WE will assume by contradiction that p # 0 in C = % € Hol (C).

Z—00

——=0

Z—00

1
‘p(z)‘ TS o= |—

p(2)

Therefore % is bounded in C and as a result is constant, p = const = degp = 0. ]




2 Uniqueness theorems

Theorem 1. Let f € Hol(G) and 3a € G such that f(™(a) = 0,m > 0 then f = 0.
Proof.
Z:{zeG:VmEOf(m)(z):O}
1. z # 0.
2. Z is open. f|p(.s) = 0( Taylor expansion around z).
3. G\Z is open (continuity of (™).

z2€G\Z = 3Im >0: f"(z) #0 = f" +£ 0 in a neighborhood of z. By connectivity of G, he have

Z=G O
Claim 1. f(2) = f'(2) =--- = f" Y a) = 0= f(Z) = (2 — a)"g(2), where
(m)
gla) = ! m'(a)’ g € Hol(Neighborhood of a)
Proof.
i=9(2)
_ 5 /M fr ™ a n
f(z)—z oy (z—a)"=(z—a) Z n+m —a)
n>m n>0
O
Definition 1 (multiplicity). The multiplicity of zero at a point a is n € Zy such that f(a) = -+ =
f0V(a) =0 f™ £ 0 e.g. my(a) = min {n €Zy : fM(a) # O}.
Note 1. f(a) #0 = my(a) =0, mys(a) =00 = f=0
Theorem 2. Let {z,} C G converges to a € G. We will assume that f(z,) =0 then f =0.
Proof. ‘?f™)(a) =0 7 We will prove with induction on m. For m = 0 it is obvious ( continuity of f).
Induction step: m —1 = m f(a) = fl(a) = --- = f" VD(a) = g(z) = % is analytic in G.
f(zn) = 0= g(z,) = 0, thus by continuity of g we have g(a) = 0= " (a) = 0. O

Corollary 7. If fi(zn) = fa(zn) for some {z,} C G then fi = fo in G.

Theorem 3 (Welerstrauss) If {fn} C Hol(G) uniformly converges locally then lim, f, = f € Hol(G)
and for all 7 >0 fn 2N 19 locally.

Proof. Setting K, § = dist (K,0G) > 0 K45 = {2 : dist(z, K) < §} C G is compact.

1. f e Hol(G): T C G is a closed triangle, 0T C G is compact.

fndz=0= fdz =0 = f is analytic in G
or or



2. fO 5 £0) in K.
Let z€e K

jl Cauchy jl

) = fOG)] < G max | (Q = O] < g maxlf— £ 750

i
G) _ )] < - _ () X £G)
max| 1) — 0| < Gmaxifu— 1= 19 5 {9 (in K)

An example of a function that is not zero in C'°*® but the multiplicity of 0 at 0 is co in R:

_ eac% x#0
f(z) = 0 s—o0

Problem 1. I = [a,b] C R f : I — C such that for all n > 0, ma)q’f(") < C"™n and C > 0 then there

exists a domain I C G such that f € Hol (G).

Problem 2 (S. bernstein). f:[0,1) = R, f € C (I) and assume that f(z) >0 for all z € [0,1),n €
Zy then

f € Hol ({|z[ < 1})



