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Today we will perform some integrals.
• Using the known result, ∫ ∞

−∞
e−x

2
dx =

√
π

We will try to see if the integral is equal over all lines such that y = const.Marking the integral∫∞
−∞ e

−x2 as
∫
R e
−x2 . Also, we can change the domain of integration to other lines by integrating

over R + ib. In these cases we will have, setting z = x+ ib⇒ ż = 1.∫
R+ib

e−z
2
dx =

∫ ∞
−∞

e(x+ib)2dx =

∫ ∞
−∞

e−x
2−2ibxdx · eb

If we can prove the following equation then we’ll be golden:∫ ∞
−∞

e−x
2 ·
(
cos (2bx) + i · sin (2bx)

)
dx = e−b

2√
π

Since the function is symmetric, the integral of sin is 0. Therefore we can get∫ ∞
−∞

e−x
2

cos (2bx) dx = e−b
2√
π ⇒

∫ ∞
−∞

e−x cos (bx) dx = e−
−b2/4

√
π

If we mark a rectangle consisting of the lines R and R+ ib between the points A and −A, with lines
from one to the other mark as b and −b respectively. We find that the integral is equal to 0. Proof
of correctness: ∫

γA,b

e−z
2
dz

A→+∞−−−−−→ 0

Of course z = A+ iy, 0 < y < b.∣∣∣∣∣
∫
γA,b

e−z
2
dz

∣∣∣∣∣ ≤ max
0≤y≤b

∣∣∣e−(A+iy)2
∣∣∣ · b = b · max

0≤y≤b

[
e−<(A+it)2

]
= b · max

0≤y≤b
e−A

2+y2 = b · eb2 · e−A2 A→+∞−−−−−→ 0

Where the first inequality comes from
∣∣∣∫γ fdz∣∣∣ ≤ maxγ |f | · L (γ)

• The second integral we will look at is∫ ∞
0

e−x
2
dx =

√
π

2

1



x

y

γR

IV

Setting z = xeπi/4 for 0 ≤ x < ∞ then ż =
eπi/4 and of course, z2 = x2eπi/2 = ix2. We
will check∫ ∞

0
eix

2
e
πi/4 ???

=

∫ ∞
0

e−x
2
dx

Using the integral∫ ∞
0

sin
(
x2
)
dx =

∫ ∞
0

cos
(
x2
)
dx =

√
2

2
·
√
π

2
=

1

2

√
π

2

Then we have ∫ ∞
0

e−ix
2
dx =

∫ ∞
0

cos
(
x2
)
− i sin

(
x2
)
dx = e

πi/4

√
π

2

Setting γR as the arc from 0 to π/4 with a radius of R >> 1 (eighth of a circle) and ΓR as the closed
arc connecting to the origin (looks like a slice of pizza), then∫

ΓR

e−z
2
dz = 0

∫
γR

e−z
2
dz

???−−−−→
R→∞

0

In γR we have z = Reiθ, 0 ≤ θ ≤ π
4 , ż = iReiθ Then:∣∣∣∣∣

∫ π/4

0
e−R

2
e2iθiReiθdθ

∣∣∣∣∣ ≤ R ·
∫ π/4

0
e−R

2 cos(2θ)dθ =
R

2

∫ π
2

0
e−R

2 cos θdθ =
R

2

∫ π
2

0
e−R

2 sin θdθ

≤ R

2

0
π/2

e−R
2· 2θ
π dθ =

R

2

∫ π
2

0
e−

2
π
R2θdθ

<
R

2

∫ ∞
0

e−
2
π
R2θdθ =

R

2
· π

2R2
=

π

4R

R→∞−−−−→

• The third integral is ∫ ∞
0

sinx

x
dx =

π

2
=
π

2

x

y

I
III

II

IV

Setting 0 < ε < R <∞ and ε ↓ 0, R ↑ ∞ then

eiz

z
=

1

z

1 +
∑
n≥1

inzn

n!

 ?
=

1

z
+
∑
n≥0

in+1

(n+ 1)!
zn

We will define the following arcs:

I is from ε to R on the real line. II is the half circle
with a radius of R and a positive imaginary part.
III is from −R to ε on the real line.
IV is a half circle with a radius of ε.

0 =

∫
Γε,R

dz

z

?
=

∫
Γε,R

eiz

z
dz

?
=

∫ z

1
dz = · · · =

∫
I+III

+

∫
II︸︷︷︸
→0

+

∫
iIII︸︷︷︸
−πi
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∫
I+III

=

∫ R

ε

eix

x
dx−

∫ R

ε

eix

x
= 2i ·

∫ R

ε

sinx

x
dx∫

IV

eiz

z
=

∫
IV

dz

z
+

∫
IV

∑
(. . . )︸ ︷︷ ︸

|γIV =πε|

∼= −
∫ π

0

εieiθ

εeiθ
dθ = −πi

It is sufficient to prove that
∫
II (. . . )→ 0 and then when R→∞, ε→ 0:

2i

∫ ∞
0

sinx

x
dx− πi = 0⇒

∫ ∞
0

sinx

x
dx =

π

2

And in a similar fashion if we integrate∫
Γε,R

1− eiz

z2
⇒
∫ ∞

0

1− cosx

x2
dx =

π

2
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