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Today we will perform some integrals.
e Using the known result,
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We will try to see if the integral is equal over all lines such that y = const.Marking the integral

ffooo e~ as fR e~ Also, we can change the domain of integration to other lines by integrating

over R + ¢b. In these cases we will have, setting z = x 4+ b= 2 = 1.
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If we can prove the following equation then we’ll be golden:
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Since the function is symmetric, the integral of sin is 0. Therefore we can get
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If we mark a rectangle consisting of the lines R and R + ib between the points A and —A, with lines
from one to the other mark as b and —b respectively. We find that the integral is equal to 0. Proof

of correctness:
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Of course z = A+ iy,0 <y < b.
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Where the first inequality comes from ’ f7 fdz‘ < max,|f|-L(v)
e The second integral we will look at is
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Setting z = xze™/* for 0 < x < oo then 2 =
e™/* and of course, 22 = z2e™/2 = iz2. We
will check
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Using the integral
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Setting vy, as the arc from 0 to 7/4 with a radius of R >> 1 (eighth of a circle) and I'p as the closed
arc connecting to the origin (looks like a slice of pizza), then
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In v we have z = Re® 0<60<7T %=iRe" Then:
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e The third integral is

Setting 0 <e < R<ocand € |0, R 1 oo then
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We will define the following arcs:

I is from € to R on the real line. II is the half circle

with a radius of R and a positive imaginary part. 7
III is from —R to € on the real line.
IV is a half circle with a radius of ¢.
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It is sufficient to prove that [;,(...) — 0 and then when R — 0o,e — 0:
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And in a similar fashion if we integrate

1 — e *©1—cosz T
7= | T dr=g
T.n Z 0 z 2




