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1 Residues

If f is analytic in 0 <|z — 20| < R and in that domain,
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(0 < p < R.) Then res (f,z0) = res,f=a_1
Theorem 1 (Cauchy). Let G be a good domain and f € Hol (G\{a1,az,...,a,}) then
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1.1 Finding the residue
1. If f has a simple pole at zy then

resy f = Zli_}Ir; (z —20) f(2)

2. If f has a pole with an order of m at zy then there exists a ¥ which is analytic and different from
2o such that f(z) = —2%)_ and the following holds:
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Problem 1. Find the Laurent expansion for
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around the following rings:
1. |z] < 1.
2. 1<z <2.
3. |z > 2.



Solution 1. We will define 5 5

f(Z):z+2—z_1=f1+f2
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Problem 2. Categorize the points of singularity of the following points and calculate the residues.
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Solution 2. 1. z = 0 is the lone point of singularity. Using the fact that
) (_1)n ,w2n+1
snw = Y CD0 T
|
= (2n+1)!
Thus,
n »—(2n+1)

ZSlIl —ZQZ 2 +1
n

This is an essential singularity (infinite number of negative powers) and resgf = %1.

2. There are points of singularity at z = 1,z = 0, lim,_,0 g(z) = 1, thus 0 is a removable singularity

residue zero). We will define 1 (z) = B2 then g(z) = L'Z)Q and v is analytic at 1. (1) # 0 thus
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1 is a pole with an order of 2 and
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Solution 3. We will define f(z) = sin (%) -sin (z) and we will want to find resgf. f is even, and as a

result the Laurent expansion has only even powers and the residue is 0.
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res g =

Problem 3. Find

Problem 4. Let p be a polynomial with simple zeroes only (a1, as,...,a, are the zeroes), show that
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Solution 4. We will define g(z) = %, g is analytic at every point other that aq,as,...,a, (removable
singularity at oo) and at ap,ag, ..., a, we have poles.
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Thus by the Cauchy theorem we arrive at
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Since oo is a removable singularity.



