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1 Uniqueness thoerems

Theorem 1. Let f ∈ Hol(G) and a ∈ G, then:

1. If f (n)(a) = 0 for all n ≥ 0 then f ≡ 0.

2. If a sequence a 6= zn → a in G, f(zn) = 0 then f ≡ 0.

Definition 1 (Order of 0). f is a 0 of order m at a if m := min
{
n ∈ Z+ : f (n)(a) = 0

}
For an analytic function at a there is a 0 of order m iff f(z) = (z − a)m · g(z) where g is analytic at a and
g(a) 6= 0.

Problem 1. Let f(z) =
∑

n≥0 anz
n which is analytic in |z| < 1. Show that

∣∣∣f( 1
n)
∣∣∣ ≤ 2−n for all n

⇒ f ≡ 0.

Solution 1. f is continuous therefore f(0) = 0 (a0 = 0). Assume that we have shown that ak−1, ak−2, . . . , a0 =
0, we will show that ak = 0.

f(z) =
∞∑
n=k

anz
n = zk

g(z)︷ ︸︸ ︷
∞∑
n=0

an+kz
n

g(z) = z−k · f(z)

∣∣∣∣g(
1

n

∣∣∣∣ =

∣∣∣∣∣nkf
(

1

n

)∣∣∣∣∣ ≤ nk2−n −−−→n→∞
0⇒ g(0) = 0⇒ ak = 0

2 Laurent series

f is analytic in t < |z − a| < R

f(z) =
∞∑

n=−∞
an (z − a)n =

Singular︷ ︸︸ ︷
−1∑

n=−∞
an (z − a)n +

Analytic︷ ︸︸ ︷
∞∑
n=0

an (z − a)n

Where every an is defined for all n ∈ Z as

an =
1

2πi

∫
|z−a|=ρ

f(z)

(z − a)n+1dz

For all r < ρ < R. When r = 0 we will say that a is an isolated singularity.
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2.1 Categorizing of singular points

Let f be analytic in 0|z − a| < R, a is a singular point.

1. If the limit limz→a f exists and is finite then a is a removable singularity.

2. If limz→a f = ∞ then f is a pole and the order of the pole is m then
∑−1

n=−m
an (z − a)n is the

singular part of the series.

3. If the limit limz→a f(z) doesn’t exist then a is an essential singularity.

Problem 2. Let f be entire. Assume that limz→∞ f(z) =∞ show that f is a polynomial.

Solution 2. Proved in lecture 15.
ANother solution for this is to say that there exists an M such that for all |z| > M ,

∣∣f(z)
∣∣ ≥ 1. In the

set |z| ≤ M there is a finite number of zeroes (else according to the uniqueness theorem f ≡ 0). We will
mark the zeroes of f as a1, a2, . . . , an including the multiplicity.

g(z) =
f(z)

(z − a1) (z − a2) · · · (z − an)

g has removable singularity at a1, a2, . . . , an meaning that g is entire (we can expand g to be entire) and

g(z) 6= 0 for all z. In addition h(z) = 1
g(z) is whole and h 6= 0. For |z| > M we have

∣∣∣ 1f ∣∣∣ ≤ 1. By the

triangle inequality |z| ≥M ,
(
|z|+M

)k ≥ ∣∣h(z)
∣∣.

The set
{
|z| ≤M

}
is compact and therefore there exists a C > 0 such that for all |z| ≤M ,

∣∣h(z)
∣∣ ≤ C. In

total we have
∣∣h(z)

∣∣ ≤ (|z|+M
)k

+ C. h is entire and therefore from last week is a polynomial of degree
at most k. Since h has no zeroes, according to the fundamental theorem of algebra h ≡ const, thus f is
a polynomial that vanishes at a1, a2, . . . , an.

Problem 3. Let f ∈ Hol(C\ {0}) and assume that there exists an a ∈ R\Z. We will assume that for all
r, ∫ 2π

0

∣∣∣∣f (eriθ)∣∣∣∣ dθ ≤ ra
Show that f ≡ 0

Solution 3. f(z) =
∑∞

n=∞ anz
n and show that an = 0 for all n ∈ Z

|an| =

∣∣∣∣∣ 1

2πi

∫
|z|=r

f(z)

zn+1
dz

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣f(reiθ)
∣∣∣∣∣rn+1ei(n+1)θ
∣∣ ∣∣∣ireiθ∣∣∣ dθ ≤ 1

2πrn

∫ 2π

0

∣∣∣∣f (reiθ)∣∣∣∣ dθ ≤ · · · ≤ rα−n

2π

If α > n then as r → 0, an → 0 and if α < n then as r →∞, an → 0.
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