Complex function theory - recitation

Kiro Avner Arazim

December 17, 2015

1 Uniqueness theorems

Theorem 1. Let $f \in Hol(G)$ and $a \in G$, then:

- 1. If $f^{(n)}(a) = 0$ for all $n \ge 0$ then $f \equiv 0$.
- 2. If a sequence $a \neq z_n \rightarrow a$ in G, $f(z_n) = 0$ then $f \equiv 0$.

Definition 1 (Order of 0). f is a 0 of order m at a if $m := \min \left\{ n \in \mathbb{Z}_+ : f^{(n)}(a) = 0 \right\}$ For an analytic function at a there is a 0 of order m iff $f(z) = (z - a)^m \cdot g(z)$ where g is analytic at a and $g(a) \neq 0$.

Problem 1. Let $f(z) = \sum_{n\geq 0} a_n z^n$ which is analytic in |z| < 1. Show that $\left| f(\frac{1}{n}) \right| \leq 2^{-n}$ for all $n \Rightarrow f \equiv 0$.

Solution 1. f is continuous therefore f(0) = 0 ($a_0 = 0$). Assume that we have shown that $a_{k-1}, a_{k-2}, \ldots, a_0 = 0$, we will show that $a_k = 0$.

$$f(z) = \sum_{n=k}^{\infty} a_n z^n = z^k \sum_{n=0}^{\infty} a_{n+k} z^n$$
$$g(z) = z^{-k} \cdot f(z) \qquad \left| g(\frac{1}{n} \right| = \left| n^k f\left(\frac{1}{n}\right) \right| \le n^k 2^{-n} \xrightarrow[n \to \infty]{} 0 \Rightarrow g(0) = 0 \Rightarrow a_k = 0$$

2 Laurent series

f is analytic in t < |z - a| < R

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n = \underbrace{\sum_{n = -\infty}^{-1} a_n (z - a)^n}_{n = -\infty} + \underbrace{\sum_{n = 0}^{\infty} a_n (z - a)^n}_{n = 0}$$

Where every a_n is defined for all $n \in \mathbb{Z}$ as

$$a_n = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz$$

For all $r < \rho < R$. When r = 0 we will say that a is an isolated singularity.

2.1 Categorizing of singular points

Let f be analytic in 0|z-a| < R, a is a singular point.

- 1. If the limit $\lim_{z\to a} f$ exists and is finite then a is a removable singularity.
- 2. If $\lim_{z\to a} f = \infty$ then f is a pole and the order of the pole is m then $\sum_{n=-m}^{-1} a_n (z-a)^n$ is the singular part of the series.
- 3. If the limit $\lim_{z\to a} f(z)$ doesn't exist then a is an essential singularity.

Problem 2. Let f be entire. Assume that $\lim_{z\to\infty} f(z) = \infty$ show that f is a polynomial.

Solution 2. Proved in lecture 15.

ANother solution for this is to say that there exists an M such that for all |z| > M, $|f(z)| \ge 1$. In the set $|z| \le M$ there is a finite number of zeroes (else according to the uniqueness theorem $f \equiv 0$). We will mark the zeroes of f as a_1, a_2, \ldots, a_n including the multiplicity.

$$g(z) = \frac{f(z)}{(z - a_1)(z - a_2)\cdots(z - a_n)}$$

g has removable singularity at a_1, a_2, \ldots, a_n meaning that g is entire (we can expand g to be entire) and $g(z) \neq 0$ for all z. In addition $h(z) = \frac{1}{g(z)}$ is whole and $h \neq 0$. For |z| > M we have $\left|\frac{1}{f}\right| \leq 1$. By the triangle inequality $|z| \geq M$, $(|z| + M)^k \geq |h(z)|$. The set $\{|z| \leq M\}$ is compact and therefore there exists a C > 0 such that for all $|z| \leq M, |h(z)| \leq C$. In

The set $\{|z| \leq M\}$ is compact and therefore there exists a C > 0 such that for all $|z| \leq M$, $|h(z)| \leq C$. In total we have $|h(z)| \leq (|z| + M)^k + C$. *h* is entire and therefore from last week is a polynomial of degree at most *k*. Since *h* has no zeroes, according to the fundamental theorem of algebra $h \equiv const$, thus *f* is a polynomial that vanishes at a_1, a_2, \ldots, a_n .

Problem 3. Let $f \in Hol(\mathbb{C} \setminus \{0\})$ and assume that there exists an $a \in \mathbb{R} \setminus \mathbb{Z}$. We will assume that for all r,

$$\int_0^{2\pi} \left| f\left(er^{i\theta}\right) \right| d\theta \le r^a$$

Show that $f \equiv 0$

Solution 3. $f(z) = \sum_{n=\infty}^{\infty} a_n z^n$ and show that $a_n = 0$ for all $n \in \mathbb{Z}$

$$|a_{n}| = \left| \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz \right| \le \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\left| f(re^{i\theta}) \right|}{\left| r^{n+1}e^{i(n+1)\theta} \right|} \left| ire^{i\theta} \right| d\theta \le \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \dots \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r^{\alpha-n}}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\theta} \right) \right| d\theta \le \frac{r$$

If $\alpha > n$ then as $r \to 0$, $a_n \to 0$ and if $\alpha < n$ then as $r \to \infty$, $a_n \to 0$.