Complex function theory - recitation

Kiro Avner Arazim

December 17, 2015

1 Elemtary funcitons

1. $Hol(\mathbb{C}) \ni e^z := e^x \cdot e^{iy} := e^x \cdot \sin y + e^x \cdot \cos y$

2. $Hol\left(\mathbb{C}\right)\ni\sin z=\frac{e^{iz}-e^{-iz}}{zi}$

3. $Hol\left(\mathbb{C}\right) = \frac{e^{iz} + e^{-iz}}{2}$

4. ...

 e^z is $2\pi i$ -periodic, $\cos z, \sin z$ are 2π -periodic. On the other hand, $\cos z/\sin z$ is not periodic. We define Logz as te set of all the solutions to the equation $e^w=z$ e.g. $w\in \text{Log}z$ iff $e^w=z$. Logz=z

 $\widehat{\ln|z|} + i \cdot \operatorname{Arg} z$ where $\operatorname{Arg} z$ denotes the set of all the arguments. A branch of the logarithm is $\log z = \ln|z| + i \cdot \alpha(z)$ where α represents a one-to-one choice of the argument. For example, $\log z = \ln|z| + i \operatorname{arg} z$, $\operatorname{arg} \in (-\pi, \pi]$. $\log z$ is analytic in $\mathbb{C}\setminus (-\infty, 0]$. If we choose Arg in the section $[0, 2\pi)$ then \log is analytic in $\mathbb{C}\setminus [0, \infty)$.!!!!

Example 1. $i^{\sqrt{3}}$ find the set.

$$i^{\sqrt{3}} \coloneqq e^{\sqrt{3}\mathrm{Log}i} = e^{\sqrt{3}+\ln|i|+i\mathrm{Arg}i} = e^{i\sqrt{3}\left(\pi/2+2\pi k\right)} = e^{i\sqrt{3}\frac{\pi}{2}+\sqrt{3}2\pi k} \Rightarrow i^{\sqrt{3}} = \left\{e^{i\sqrt{3}\frac{\pi}{2}+\sqrt{3}2\pi k} : k \in \mathbb{Z}\right\}$$

Problem 1. The problem here is that the lesson is mostly visual, we will upload a written version. In general, it is similar to last recitation where instead of using möbius transformations we found biholomorphic maps.