Complex function theory - recitation

Kiro Avner Arazim

November 17, 2015

Definition 1. A Conformal map f is $f : \mathbb{C} \to \mathbb{C}$ one to one and holomorphic (in particular $f' \neq 0$)

A common marking is $\overline{\mathbb{C}} = \widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$

Definition 2. The transformation $f(z) = \frac{az+b}{cz+d}$ is called a möbius transformation and has the following properties:

- 1. f is möbius $\Rightarrow f$ is bi-holomorphic (holomorphic, invertible and f^{-1} is holomorphic). $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ (and every such transformation is möbius).
- 2. Let $\{z_1, z_2, z_3\} \subset \hat{\mathbb{C}}$ and $\{z_1, z_2, z_3\} \subset \hat{\mathbb{C}}$ then there xists a single mobius transformation such that $f(z_i) w_i$ given by $w = f(z), (w_1, w_2, w_3, w) = (z_1, z_2, z_3, z_4)$ where

$$(a, b, c, d) := \left(\frac{a-c}{a-d}\right) / \left(\frac{b-c}{b-d}\right)$$

Definition 3 (Generalized circle). A generalized circle is acircle or a line. 3 points define a single generalized circle.

Claim 1. z, z^* are symmetric in relation to a generalized circle C iff there exist $z_1, z_2, z_3 \in C$ such that $(z_1, z_2, z_3, z^*) = \overline{(z_1, z_2, z_3, z)} \Leftrightarrow$ for any 3 points in C.

Claim 2. Let $f \in M \ddot{o} b\left(\hat{\mathbb{C}}\right), z, z^*$ are symmetric with relation to C, then $f(z), f(z^*)$ are symmetric with relation to f(C).

Problem 1. Let R > 0. Find a $f \in M \ddot{o}b(\mathbb{C}_+), f : \mathbb{C}_+ \to \{w | |w| < R\}$ where \mathbb{C}_+ is defined as $\{z \in \mathbb{C} | \Im(z) > 0\}$ such that $f(\alpha) = 0$.

Solution 1. $f(z) = \frac{az+b}{cz+d}$ and by symmetry, $f(\alpha) = 0$, $f(\bar{\alpha}) = \infty$ since the symmetric point of 0 according to B(0, R) is ∞ . We have $a\alpha + b = 0$ and $c\bar{\alpha} + d = 0$ then we can write $f(z) = \lambda \frac{z-\alpha}{z-\bar{\alpha}}$. $f(o) = \lambda \cdot \frac{-\alpha}{-\bar{\alpha}} = \lambda \cdot \frac{\alpha^2}{|\alpha|^2} |f(0)| = R, |f(0)| = |\lambda|$ then $|\lambda| = R$ and we have found

$$f(z) = Re^{i\theta} \frac{z + \alpha}{z - \alpha}$$

Problem 2. Find f(T) given $f(z) = \frac{1}{z}$ for the following T.

1. $T = \{z \in \mathbb{C} | |z - i| = 1\}$ 2. $T = \{z \in \mathbb{C} | |z - i| = \sqrt{2}\}$

Solution 2. We will look at three points in each circle and see where they point to, since three points define a circle.

- 1. $f(0) = \infty$ $f(2) = \frac{1}{2}$ and $f(1+i) = \frac{1}{1+i} = \frac{i-i}{2}$ the only line which goes through all three of these points is $f(T) = \left\{ w | \Re(w) = \frac{1}{2} \right\}$.
- 2. $f(1 + \sqrt{2}) = \frac{1}{1 + \sqrt{2}}$, f(-i) = i and f(i) = -i meaning that the transformation inverts the circle around the real axis.