Complex function theory - recitation

Kiro Avner Arazim

October 29, 2015

1 A little topology

Definition 1. A set $U \subseteq \mathbb{C}$ is called an open set if for all $z \in U$ there exists a disk D such that $z \in D \subseteq U$

Definition 2. $X \subseteq \mathbb{C}$ is connected iff there fo not exists open and disjoint sets $A, B \subseteq U$ such that $X = A \cup B$.

Definition 3 (Polygonal/Arc connectivity). $X \subseteq \mathbb{C}$ is called polygonally/arc connected if for all $z_1, z_2 \in X$ there exists a polygonal line/ arc which is a subset of X and connects z_1 and z_2 .

Definition 4 (Domain). An open and connected set is called a domain.

Problem 1. Show that a domain is polygonally connected.

Solution 1. Let X be a domain and $z_0 \in X$ we will define

 $A = \{z \in X : \text{There exists a line between } z_0 \text{ and } z\}$

 $B = \{z \in X : No \text{ line exists between } z_0 \text{ and } z\}$

 $X = A \cup B$ we will assume that X is not polygonally connected. Thus $B \neq \emptyset$ and $z_0 \in A \neq \emptyset$. Consequently, a;; that is left to show is that A, B are open and we will arrive at a contradiction to the fact that X is connected.

We will show that X is open: Let $z' \in A$ Since X is open there exists a disk $z' \in D \subseteq X$ and by definition of A there is a polygonal line Γ which connects z_0 with z' for $z \in D$ the polygonal line $\Gamma \cup [z', z]$ connects z_0 with z. Thus $D \subseteq A$ and A is open. In a similar fashion, B is open.

2 Limits and continuity

Definition 5. A sequence $z_n \to z_0$ iff $|z_n \to z_0| \to 0$.

Problem 2. Check the convergence of the following sequences:

1. $a_n = n \cdot z^n$ $z \in \mathbb{C}$ 2. $\arg\left(\frac{i-n}{2n-i}\right)$ $\arg \in [-\pi, \pi)$ Solution 2. 1. $|a_n| = n \cdot |z|^n \rightarrow \begin{cases} \infty & |z| \ge 1\\ 0 & |z| < 1 \end{cases}$ 2.

$$\frac{i-n}{2n-i} = \frac{(i-n)(2n+i)}{4n^2+1} = \underbrace{\overbrace{-2n^2-1}^{\rightarrow -1/2}}_{4n^2+1} + i\underbrace{\overbrace{-2n^2-1}^{\rightarrow 0^+}}_{4n^2+1}$$

and thus,

$$b_n = \arctan\left(\frac{\frac{n}{4n^2+1}}{\frac{-2n^2-1}{4n^2+1}}\right) + \pi = \pi$$

Definition 6. $f : \mathbb{C} \to \mathbb{C}$ is differentiable at the point z if the following complex limit exists:

$$f'(z) = \lim_{\mathbb{C} \ni h \to 0} \frac{f(z-h) - f(z)}{h}$$

Definition 7. A function f which is differentiable in a domain Ω is called analytic or holomorphic in Ω .

Theorem 1. If $f' \equiv 0$ in Ω then f is constant in Ω .

Problem 3. Let $f = u_i v$ be an analytic gunction in the somain Ω show that if $u \equiv c$ for some constant c in Ω then f is constant.

Solution 3. See lecture 3.

Corollary 1. f(z) = |z| is not analytic in any domain on the complex plane.

Problem 4. Let $g:[0,1] \to \mathbb{C}$ be a continuous function in [0,1]. We will define

$$F(Z) = \int_{1}^{0} \frac{g(t)}{z - t} dt$$

Show that F is analytic in the domain $\mathbb{C}\setminus[0,1]$.

Solution 4. For $z, z_0 \in \mathbb{C} \setminus [0, 1]$

$$\frac{F(z) - F(z_0)}{z - z_0} = \frac{1}{z - z_0} \left[\int_0^1 \frac{g(t)}{z - t} dt - \int_0^1 \frac{g(t)}{z_0 - t} dt \right] = \int_0^1 \frac{(z_0 - z) g(t)}{(z - t)(z_0 - t)} dt$$