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1 Poisson integral

Let H : II — R which is bounded and piecewise continuous then
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is the poisson integral of H and is harmonic in D and Pp(2) % H(e®)
z—re’

Problem 1 (Harnack inequality). Show that if u is harmonic and positive in D then for all z € D
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Solution 1. We will assume that u € C(ID), thus by Poisson, for all z € D we have
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By the triangle inequality we have
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And we arrive at
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Multiplying by A = % ffﬂ u(e®)dy = u(0) where the second equality comes from the average value
principle.we have
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Using the_poisson integral, we have the requaired inequalities.
If u ¢ C(D) then we will define u,(z) = u(r-z) for 0 < r < 1. u, € C(D) and harmonic in D and therefore,
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Thus, for all |w| < r we have
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And as r — 1 we have the required inequality.



Problem 2. Show that if u € Harm(C) and 0 > u Then u is constant.

Solution 2. There exists an entire f such that f = u 4 4v, the function g = e/ is also entire and bounded
by 1, therefore g is constant = f is constant = u is constant.

Problem 3. Show that if f is entire and R(f(z)) = O (jz') as z — oo then f is a polynomial with a
degree of at most p

Reminder 1 (Schwartz integral). If f = u + iv is analytic in |z] < r and continuous up to the boundary,

then for all|z| < r
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Solution 3. For |z| < r (we will choose r at the end)
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Choosing r = 2|z| we ahve
|f(z)| < C- 2?27 - 3+]|v(0)]

And according to one of the corollaries of the Louiville theorem f is a polynomial with a degree of at
most p.

Problem 4 (2010). Le f be an analytic function in|z| < 1 and continuous up to the boundary. Assume
that 1 <|f(z)| < M for|z| =1 and f(0) =
[a.]Show that there exists a |zp| < 1 such that f(z9) = 0. Show that the aforementioned zp holds
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Solution 4. 1. Assume by contradiction that f # 0 in|z| < 1 we will define an analytic function g = %,
thus by the maximum principle
1=[g(0)] < maxlg| <1

Thus we have a contradiction and there exists a zg such that f(z9) = 0.

2. Let |z9| < 1 for which f(z9) = 0 we will define
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g is analytic in \z\ < 1 and continuous up to the boundary. g¢(0) = —%. And if |z| = 1 then
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And here the TA got mixed up and will upload an answer later.



