Complex function theory - recitation

Kiro Avner Arazim (C)

December 29, 2015

Theorem 1. Let G be a good domain and f be a meromorphic function. If $f \neq 0, \infty$ on ∂G then

$$\frac{1}{2\pi i} \int_{\partial G} \frac{f'}{f} = N_f(G) - P_f(G)$$

Including multiplicity, where N_f is the number of zeores and P_f is the number of poles.

Theorem 2 (Rouche theorem). Let G be a good domain and $f, g \in Hol(G)$ are continuous up to the boundary. If |f - g| < |g| in ∂G then $N_f(G) = N_g(G)$

Problem 1. How many solution does the equation $2z^5 + 8z - 1 = 0$ have in the annulus a < |z| < 2

Solution 1. Denoting $f(z) = 2z^5 + 8z - 1$ and $g(z) = 2z^5$. Then $|f - g| = |8z - 1| \stackrel{|z|=2}{\leq} 17$ and $|g| = 2^6 > 17$. Therefore, by the Rouch theorem, f, g have an identical number of zeroes in |z| < 2(5 zeroes). For |z| < 1we will define h(z) = 8z.

$$|f-h| \stackrel{|z|=1}{=} |2z^5-1| \le 3 < 8 = |h|$$

and consequently by the Rouche theorem f has a single 0 in |z| < 1. In total, f has 4 seroes in the aforementioned annulus, we can easily check that f has no zeroes for |z| = 1

Problem 2. Prove that the equation $(z-2)^3 e^z = 1$ has 3 different solutions with a multiplicity of 1 in $\{\Re z \ge 0\}$

Solution 2. We will define $f(z) = (z-2)e^z - 1$. First we will show that every solution to f(z) = 0 has a degree of 1. Assume that f(z) = 0 and therefore $f'(z) = 3(z-2)^2 e^z + e^{z}(z-2)^3$. If f'(z) = 0 we put in

f(z) and get that $\Re z \leq 0$.

It is sufficient to have that the function $h(z) = (z-2)^3 - e^{-z}$ jas exactly 3 solutions in the right half plane. We will define $g(z) = (z - 2)^3$

$$|g(z) - h(z)| = |e^{-z}| \le 1$$
 $|g(z)| \ge \min\left\{ (R-2)^3, 8 \right\}$

For any big enough $R \ge 4$ we have |g - h| < |g| therefore by the rouche theorem we have 3 zeroes in the domain, setting $R \to \infty$ and we have the required terms.

Theorem 3 (Open mapping theorem). If f is analytic in the domain D and is not a constant then f(D)is open.

Problem 3. Let f be entire and one-to-one, show that f is linear.

Solution 3. If f is a polynomial then $f'(z) \neq 0$ for all z (from injectivity), f' is a polynomial and by the fundamental theorem, f' is constant and therefore linear.

If f is not a polynomial then f has an essential singularity at infinity and the set $G_1 = f(\{|z| > 1\})$ is dense (Cazoratti weierstrauss). By the open mapping theorem $G_2 = f(\{|z| < q\})$ is open, thereforem $G_1 \cap G_2 \neq \emptyset$ and there exist $|z_1| < 1, |z_2| > 1$ such that $f(z_1) = f(z_2)$.

Lemma 1 (Schwartz's lemma). If $f : D \to D$ ($D = \{|z| < 1\}$) is analytic such that f(0) = 0 then |f(z)| < |z| and |f'(0)| < 1. In addition, if there exists a w such that |f(w)| = |w| or f'(0) = 1 then there exists a |C| = 1 such that $f(z) = c \cdot z$

Note 1. The function $\phi_a(z) = \frac{z-a}{1-\bar{a}z}$. For $a \in D$ we have $\phi_a: D \to D$ and is injective, $\phi_a(a) = 0$.

Problem 4. $f(z) = \sum_{n\geq 0} a_n z^n$ is analytic in D and bounded $|f(z)| \leq M$ in D. Show that $M|a_1| \leq M^2 - |a_0|^2$

Solution 4. Assume that f is not constant. we will define $g = \frac{f}{M}$, $g: D \to D$. $g(0) = a_0$. We will define $h = \phi_{a_0/M} \circ g$. $h: D \to D$, h(0) = 0 and therefore by Schwarz's lemma, $|h'(0)| \leq 1$.