Calculus 2

Adi Glicksam
Arazim (¢

April 19, 2015

1 Summation by parts

{an},{bn} are sequences.
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1.1 Abel and Dirichlet

Theorem 1 (Dirichlet). Given {a,},{bn} sequences of functions in the area D.
o The series {BN(ac) = Zgzl bn(ac)} is bounded uniformly in D.
e for all z {ay(x)} is monotonic and in addition, a,(X) %0

then the series Y an(x)b,(x) unifomly converges in D.

Theorem 2 (Abel). Given {an},{bn} sequences of functions in the area D.

o The series {BN(a:) = Zﬁle bn(az)} uniformly converges in D. (The seriesy .- By(z) =Y

uniformly converges in D).
o forallxze D {an(ac)} is monotonic and bounded uniformly

then the series Y an(x)by(x) unifomly converges in D.

1.2 A useful Lemma

Lemma 1. for all x € (0,7)
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Proof. We will notice that:
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1.3 Problems
1. Find the sums of the following series:
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For the sequences a, = k? and by = k and using the first formula we get that
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2. Show that > 7 \f)n converges in N\ to a continuously differentiable function.



Solution: set x € R and we will show that the infinite series is differentiable in at . We will look
at the section [—A, A] for A =|z| + 1 (and, in particular z € [-A, A]).
We will look at the series of derivatives:
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we get that B, (z) = SV, (=1)" is uniformly bounded by 2. Also , {a,(x)} is monotonic and
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From the Dirichlet Theorem the derivative series uniformly converges in [—A, A]. In addition, w
ewill notice that for zy = Othe series ) uy(z¢) converges to 0.and therefroe from a theorem on
differentiation item-item there exists a function f : [-A, A] — ~ such that

(8) f/(2) = S0, (@) for all @ € [~A, 4]
(b) f’is continuous as a uniform limit of a continuous function.
(c) f(z) =" un(zx) for all z € [—A, A]

and in particular, the series converges to a uniformly differentiable series.

. Prove that the series 227:1 %(m’) uniformly converges in the section [0, 7 — J] for all 6 € (0, ).

Solution We will mark a,(z) = £,b,(x) = sin(nx) then, fro mthe previous Lemma, SN ba(x)

is uniformly bounded by ﬁ conversely, {a,(x)} is monotonic
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. Does the following series uniformly converge in R?
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Solution: We will define b, (z) = (—1)""! The selrieszgz1 bp(x) is uniformly bounded. We will

define a,(z) = ﬁ

. Given {\,} a series of monotonic rising numbers that is non-negative from a certain point. And
given o € Rsuch that the series > 7, ay, - e M0 < oo prove that the series > an - e~ AnTo
uniformly converges in [zg, c0)

by () Cn ()
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Solution We will notice that a,e % = (ane_A"I) e~ 270

(a) {2521 bn(x)} uniformly converges in [zg, 00)

(b) Since {)\,} is a monotic rising sequence = e~*» is a monotonic decreasing sequence = Cy,(z) =
e~ (z=20)which is a monotic decreasing sequence for all z and is bounded by 1.

Consequently, from the Abel theorem we get that the series uniformly converges in [zg, 00)



2 Power Series

Definition: A power series around zg € C is a series of the form

o
Z an - (2 — 20)"
n=0

{an} C C is a series of numbers.

Note 1. e For zy # 0 we can switch the variables w = z — 29 and look at a power series around 0
instead of around zg

o If z = zy then the series > > an((z — 20)™ = ap converges

e It is east to create a series that does not converge at at points other than zy for example a; = k!
and it is also easy to create a series that converges in all of C for example a; = %

2.1 Theorems

Theorem 3 (Abel). For all power series > oo an - 2* there exists an R € [0,00] such that for all
e {|z| > R} the series diverges.
e v < R the series uniformly converges (absolutely in the section {|z| < ~v})

Corollary 1. The series converges to a continuous function in the section {|z] < R} R is called the
convergence radius of the series.

Theorem 4 (Cauchy Hadamard).
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Where ” 57 =0 and 7 ;7 = oo

Theorem 5 (Delambert theorem). if the limit lim,, oo #11 erists, then R = lim,, s aiﬁ
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2.3 Problem
Find the convergence radius for the following series:
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Solution: in this case, zo = 2 and a, = # Therefore:
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Solution:

e First Way: We will look at the series Y .~ ("gln)wn,w = 23 We will get that if Ry is the

convergence radius for this radius then our convergence radius is R = /Ry

e Second Way:
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. Yy 755w Find the convergence area in R.

Solution:
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We will checkthe boundary points which are +2. It is easy to see that > n%% < oo and therefore
we have absolute convergence in [—2,2].

n=1

Find the convergence area in R.

W Can we do this:
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The step (0 is legal if both absolutely converge.
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From Homework 7: Let > a,z™, > b,z"™ be series with a convergence radius of Rj, Ry respec-
tively. If Ry # Ry then the convergence radius of the series Y -7 | (an + by)a™ is min{ Ry, Rs}.
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And therefore the convergence radius is 3.

2.4 Integration and differentiation

Theorem 6. The series > ay, - 2* and the series Sk - ay, - 271 have the same convergence radius.

Corollary 2. If the series Y. apx® converges in the section (—R, R) (R is the convergence radius). Then
for all x € (=R, R) Sk - a, - 2*71 converges to f'(x) and in particular in the section (—R,R) f is
differentiable in all orders.

- - ko ™ (0)
Corollary 3. The Taylor expansion of f around 0 is Y apx™ if for all k ap*—3—*

Note 2. There exist series with Taylor expansions that converge but not to a function. For example:
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f is differentiable oo times around 0 and f(™) (0) = 0 in particular the Taylor expansion converges in all
of R but not to a function.

2.5 Problem

Find a Taylor expansion for the function f(x) = e~ around z¢ = 0

2.5.1 Solution

A known Taylor expansion is

There is convergence in all of R to a function from the uniqueness of Taylor expansions.

2.6 Problem

Find a closed expression for the following series and write it if we have an equality.
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