
Calculus 2

Adi Glücksam
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1 Summation by parts

{an} , {bn} are sequences.

n∑
k=m

ak(bk+1 − bk) = an+1bn+1 − ambm −
∑

6nk=mbk+1(ak+1 − ak) (1)

n∑
k=0

(ak − bka0
n∑
k=0

bk +

n−1∑
j

(aj+1 − aj)
n∑

k=j+1

bk

 (2)

n∑
k=0

(ak · bkan ·
n∑
k=0

bk −
n−1∑
j=0

(aj+1 − aj)
j∑

k=0

bk

 (3)

1.1 Abel and Dirichlet

Theorem 1 (Dirichlet). Given {an} , {bn} sequences of functions in the area D.

• The series
{
BN (x) =

∑N
n=1 bn(x)

}
is bounded uniformly in D.

• for all x
{
an(x)

}
is monotonic and in addition, an(X)

u→ 0

then the series
∑
an(x)bn(x) unifomly converges in D.

Theorem 2 (Abel). Given {an} , {bn} sequences of functions in the area D.

• The series
{
BN (x) =

∑N
n=1 bn(x)

}
uniformly converges in D. (The series

∑∞
n=1BN (x) =

∑N
n=1 bn(x)

uniformly converges in D).

• For all x ∈ D
{
an(x)

}
is monotonic and bounded uniformly

then the series
∑
an(x)bn(x) unifomly converges in D.

1.2 A useful Lemma

Lemma 1. for all x ∈ (0, π) ∣∣Bn(x)
∣∣ =

∣∣∣∣∣∣
N∑
n=1

sin(nx)

∣∣∣∣∣∣ ≤ 1

sin(x2 )
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Proof. We will notice that:

sinα · sinβ =
1

2

(
cos(α− β)− cos(α+ β)

)
BN (x) · sin

(
x

2

)
=

N∑
n=1

sin(nx) · sin
(
x

2

)
=

1

2

N∑
n=1

[
cos

(
(n− 1

2
) · x

)
− cos

(
(n+

1

2
) · x

)]
=

1

2

[
cos

(
x

2

)
−
�
����

cos

(
3x

2

)
+
�
����

cos

(
3x

2

)
−
�
����

cos

(
5x

2

)
+ ...+

���������
cos

(
(N − 1

2
) · x

)
− cos

(
(N +

1

2
) · x

)]

⇒
∣∣BN (x)

∣∣ · sin x
2
≤

∣∣∣∣∣∣∣
cos
(
x
2

)
− cos

(
(N + 1

2) · x
)

2

∣∣∣∣∣∣∣⇒
∣∣BN (x)

∣∣ ≤ 1

sin(x2 )

1.3 Problems

1. Find the sums of the following series:

(a)
n∑
k=0

k · 2k

We will use the third formula:

n∑
k=0

ak · bk = n ·
n∑
k=0

2k −
n−1∑
j=0

(j + 1)− j) ·
j∑

k=0

2k

 =

n · (2n−1 − 1)−
n−1∑
j=0

(2j+1 − 1) = n · 2n−1 = n+ n− (2n+1 − 2 = .... = (n− 1)2n+1 + 2

(b)
n∑
k=1

k2

For the sequences ak = k2 and bk = k and using the first formula we get that

n∑
k=1

k2 =

ak︷︸︸︷
k2 ·

bk+1−bk=1︷ ︸︸ ︷(
(k + 1)− k

)
=
(

(n+ 1)2(n+ 1)− 1
)
−

n∑
k=1

(k + 1)
(

(k + 1)2 − k2
)

= (n+ 1)3 − 1−
n∑
k=1

(k + 1)(2k + 1) = (n+ 1)3 − 1−
n∑
k=1

(2k2 + 3k + 1) =

= (n+ 1)3 − 1− 2

n∑
k=1

k2 − 3

n∑
k=1

k − n⇒ 3

n∑
k=1

k2 = ... = n33n2
2

+
n

2
⇒

n∑
k+1

k2 =
n3

3
+
n2

2
+
n

6

2. Show that
∑∞

n=1
(−1)n√

n
converges in r to a continuously differentiable function.
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Solution: set x ∈ R and we will show that the infinite series is differentiable in at x. We will look
at the section [−A,A] for A = |x|+ 1 (and, in particular x ∈ [−A,A]).
We will look at the series of derivatives:

u′n(x) =
(−1)n

x2 + n
= (−1)n · 1

x2 + n
= bn(x) · an(x)

we get that Bn(x) =
∑N

n=1(−1)n is uniformly bounded by 2. Also , {an(x)} is monotonic and∣∣an(x)
∣∣ ≤ 1

n
→ 0⇒ an(x)

u→ 0

From the Dirichlet Theorem the derivative series uniformly converges in [−A,A]. In addition, w
ewill notice that for x0 = 0the series

∑
un(x0) converges to 0.and therefroe from a theorem on

differentiation item-item there exists a function f : [−A,A]→ r such that

(a) f ′(x) =
∑∞

n=1 u
′
n(x) for all x ∈ [−A,A]

(b) f ′ is continuous as a uniform limit of a continuous function.

(c) f(x) =
∑∞

n=1 un(x) for all x ∈ [−A,A]

and in particular, the series converges to a uniformly differentiable series.

3. Prove that the series
∑N

n=1
x sin(nx)

n uniformly converges in the section [δ, π − δ] for all δ ∈ (0, π).

Solution We will mark an(x) = x
n , bn(x) = sin(nx) then, fro mthe previous Lemma,

∑N
n=1 bn(x)

is uniformly bounded by 1
sin( δ

2
)

conversely, {an(x)} is monotonic

4. Does the following series uniformly converge in R?

∞∑
n=1

x2(−1)n−1

(x2 + 1)n

Solution: We will define bn(x) = (−1)n−1 The series
∑N

n=1 bn(x) is uniformly bounded. We will

define an(x) = x2

(x2+1)n

5. Given {λn} a series of monotonic rising numbers that is non-negative from a certain point. And
given x0 ∈ Rsuch that the series

∑∞
n=1 an · e−λnx0 < ∞ prove that the series

∑∞
n=1 an · e−λnx0

uniformly converges in [x0,∞)

Solution We will notice that ane
−λnx =

bn(x)︷ ︸︸ ︷(
ane
−λnx

) Cn(x)︷ ︸︸ ︷
e−λn

Positive
x−x0

(a)
{∑N

n=1 bn(x)
}

uniformly converges in [x0,∞)

(b) Since {λn} is a monotic rising sequence⇒ e−λn is a monotonic decreasing sequence⇒ Cn(x) =
e−λn(x−x0)which is a monotic decreasing sequence for all x and is bounded by 1.

Consequently, from the Abel theorem we get that the series uniformly converges in [x0,∞)
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2 Power Series

Definition: A power series around z0 ∈ C is a series of the form

∞∑
n=0

an · (z − z0)n

{an} ⊆ C is a series of numbers.

Note 1. • For z0 6= 0 we can switch the variables w = z − z0 and look at a power series around 0
instead of around z0

• If z = z0 then the series
∑∞

n=0 an((z − z0)n = a0 converges

• It is east to create a series that does not converge at at points other than z0 for example ak = k!
and it is also easy to create a series that converges in all of C for example ak = 1

k!

2.1 Theorems

Theorem 3 (Abel). For all power series
∑∞

k=0 an · zk there exists an R ∈ [0,∞] such that for all

•
{
|z| > R

}
the series diverges.

• γ < R the series uniformly converges (absolutely in the section
{
|z| ≤ γ

}
)

Corollary 1. The series converges to a continuous function in the section
{
|z| < R

}
R is called the

convergence radius of the series.

Theorem 4 (Cauchy Hadamard).
1

R
= lim sup

n→∞
n
√
|an|

Where ” 1
∞” = 0 and ”1

0” =∞

Theorem 5 (Delambert theorem). if the limit limn→∞

∣∣∣ an
an+1

∣∣∣ exists, then R = limn→∞

∣∣∣ an
an+1

∣∣∣
2.2 Known Series

Function Series Convergence radius

ex
∑ xk

k! ∞∑
k! · xk 0

ln(1 + x)
∑ xk

k (−1)n 1
1

1−x
∑
xk 1

1
(1−x)2

∑
(k + 1)xk 1

Function Series Convergence radius

sinx
∑ x2k+1·(−1)k

(2k+1)! ∞

cosx
∑ x2k·(−1)k

(2k)! ∞

arctanx
∑ (−1)kx2k+1

2k+1 1
1

1+x2
∑

(−1)kx2k 1

2.3 Problem

Find the convergence radius for the following series:

1.
∞∑
n=1

(z − 2)n

n1/n

Solution: in this case, z0 = 2 and an = 1
n1/n

Therefore:

1

R
= lim sup

n→∞

n

√
1

n1/n
= lim

n→∞

1

n1/n2
= 1⇒ R = 1
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2.
∞∑
n=0

(n+ 1)z3n

2n

Solution:

• First Way: We will look at the series
∑∞

n=0
(n+1)wn

2n , w = z3 We will get that if R0 is the
convergence radius for this radius then our convergence radius is R = 3

√
R0

• Second Way:

an =

{
k+1
2k

n = 3k

0 else

1

R
= lim sup

n→∞
n
√
|an| = lim sup

k→∞

3k

√
k + 1

2k

3.
∞∑
n=1

n2(z + 1)n

πn + en

Solution In this question, an = n2

πn+en , z0 = (−1)

1

R
= lim sup

n→∞
n
√
|an| = lim sup

n→∞

1

π

n
√
n2

n

√
1 +

(
e
π

)n = ... =
1

π
⇒ R = π

4.
∑∞

n=1
xn

n2·2n Find the convergence area in R.

Solution:

x0 = 0, an =
1

n2 · 2n
,

1

R
= ... =

1

2
⇒ R = 2

We will checkthe boundary points which are ±2. It is easy to see that
∑ 2n

n2·2n < ∞ and therefore
we have absolute convergence in [−2, 2].

5.
∞∑
n=1

3n + (−2)n

n

Find the convergence area in R.

Solution: x0 = −1, cn = 3n+(−2)n
n Can we do this:

∞∑
n=1

3n + (−2)n

n
(x+ 1)n

?©
=

∞∑
n=1

3n

n
(x+ 1)n +

∞∑
n=1

(−2)n

n
(x+ 1)n

The step ?© is legal if both absolutely converge.

From Homework 7: Let
∑
anx

n,
∑
bnx

n be series with a convergence radius of R1, R2 respec-
tively. If R1 6= R2 then the convergence radius of the series

∑∞
n=1(an + bn)xn is min{R1, R2}.
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1

R1
= lim sup

n→∞

n

√
3n

n
= 3⇒ R1 =

1

3

1

R2
= lim sup

n→∞

n

√
|−2|n

n
= 2⇒ R2 =

1

2

And therefore the convergence radius is 1
3 .

2.4 Integration and differentiation

Theorem 6. The series
∑
ak · zk and the series

∑
k · ak · zk−1 have the same convergence radius.

Corollary 2. If the series
∑
akx

k converges in the section (−R,R) (R is the convergence radius). Then
for all x ∈ (−R,R)

∑
k · an · zk−1 converges to f ′(x) and in particular in the section (−R,R) f is

differentiable in all orders.

Corollary 3. The Taylor expansion of f around 0 is
∑
akx

k if for all k ak
f (k)(0)
k!

Note 2. There exist series with Taylor expansions that converge but not to a function. For example:

f(x) =

e−
1
x2 x 6= 0

0 x = 0

f is differentiable ∞ times around 0 and f (m)(0) = 0 in particular the Taylor expansion converges in all
of R but not to a function.

2.5 Problem

Find a Taylor expansion for the function f(x) = e−x
3

around x0 = 0

2.5.1 Solution

A known Taylor expansion is

ex =

∞∑
n=0

xn

n!
⇒ e−x

3
=

∞∑
n=0

(−1)n · x3n

n!

There is convergence in all of R to a function from the uniqueness of Taylor expansions.

2.6 Problem

Find a closed expression for the following series and write it if we have an equality.

1.

S(x) =
∞∑
n=0

(x+ 2)n

(n+ 3)!

WE will use the Taylor expansion of ex+2

ex+2 =
∞∑
n=0

(x+ 2)n

n!
=
∞∑
n=3

(x+ 2)n

n!
+

(x+ 2)2

2
+x+2+1

k=n−3
=

∞∑
k=0

(x+ 2)k+3

(k + 3)!
+

(x+ 2)2

2
+x+2+1
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= (x+ 2)3
∞∑
k=0

(x+ 2)k+3

(k + 3)!
+

(x+ 2)2

2
+ x+ 3 = (x+ 2)3 · S(x) +

(x+ 2)2

2
+ x+ 3 = ex+2

x 6= −2 : S(x) =
1

(x+ 2)3

(
ex+2 − (x+ 2)2

2
− x− 3

)
, x = −2 : S(x) =

1

3!

2.

S(X) =
∞∑
n=0

xm=1

2n+ 1

S′(x) =
∞∑
n=0

(x2n)
|x|<1

=
1

1− x2

S(x) =

∫ x

0

1

1− t2
= ... = ln

(√
1 + x

1− x

)

3.

S(x)
∞∑
n=0

(n+ 1)xn

We will notice that∑
(xn)′ =

∫ x

0
S(x) =

∞∑
n=1

xn+1 =
∞∑
n=2

xn =
|x|<1

=
x2

1− x
⇒ S(x) =????

4.

S(x) =
∞∑
n=0

n2+!

2n · n!
· xn =

∞∑
n=0

n2 + 1

n!
·

(
x2

2

)n
=
∞∑
n=0

n2

n!
·

(
x2

2

)n
=
∞∑
n=0

1

n!
·

(
x2

2

)n
= I(x) + e

x
2

I(x) =
∞∑
n=0

n2

n
·
(
x

2

)n
k=(n−1)

=
∞∑
k=0

(k + 1)2

(k + 1)!
·
(
x

2

)k+1

=
∞∑
k=0

k + 1

k!
·
(
x

2

)k+1
m=k−1

=

=
∞∑
m=0

m+1+1︷ ︸︸ ︷
m+ 2

(m+ 1)!
·
(
x

2

)m+2

=
∞∑
m=0

1

m!
·
(
x

2

)m+2

+
∞∑
m=0

1

(m+ 1)!
·
(
x

2

)m+2

=

(
x

2

)2

· e
x
2
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