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1 Differentiation and Integration of sequences of functions

Theorem 1. fn : [a, b]→ R, fn ∈ R[a, b], f : [a, b]→ R such that fn
u→ f then:

1. f ∈ R[a, b]

2.
∫ b
a f = limn→∞

∫ b
a fn

If the integral is indefinite then even uniform convergence will not help.For example:

fn(x) =

{
1
n x ∈ [0, n]

0 else

Theorem 2 (Majorants). Fn[a,w] → R for all w > b fn
u→ f in [a, b] and there exists a ϕ : [a,w] → R

such that |fn| ≤ ϕ and |f | ≤ ϕ and
∫ w
a ϕ converges then

∫ w
a f converges too. Even more so:∫ w

a
f =

∫ w

a
lim
n→∞

fn = lim
n→∞

∫ w

a
fn ≤

∫ w

a
ϕ

1.1 Problem

fn : [0, 1]→ R fn(x) = x · nα · e−nx For what values of α does {fn}uniformly converge?

1. It is easy to see that fn
p→ 0 since a polynomial growth rate is always smaller than an exponential

one. In order to find the maximum we will use differentiation:

f ′n(x)nα[e−nx + x · (−n)e−nx] = 0⇔ x =
1

n

fn(0) = 0, fn(1) = nαe−n, f

(
1

n

)
=
sα−1

e

sup
[0,1]
|fn − f | = max

{
nα · e−n, n

α−n

e

}
Large enough n

≤ nα−1

e

First case: α < 1 then sup[0,1]|fn| → 0 and therefore w e have convergence/

Second case: α ≥ 1 then sup[0,1]|fn| ≥ 1
e > 0 and in particular we do not have convergence

(xn
1
n ⇒

∣∣fn(xn)− f(xn)
∣∣ ≥ 1

e for all n).

2. For what values of α ∫ 1

0
lim
n→∞

fn = lim
n→∞

∫ 1

0
fn

We will notice from (a) that
∫ a
b limn→∞ fn = 0
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First Case α < 1 from a theorem on uniform convergence wecan switch, in particular ? agrees
with it.

Second case α > 1

∫ 1

0
x · nα · e−nxdx = ... =

→0︷ ︸︸ ︷
−n

α−1

en
− nα−1

en
+nα−1

for the third item nα−1 → 0 iff α ≤ 1 therefore what we wanted to prove is true also for α > 1

This problem is good example for a case when

fn 6
u→ f and

∫ b

a
fn →

∫
6baf

2 Series of functions

Let un : [a, b]→ R ans we will mark sn[a, b]→ R, Sn(x)
∑n

k=1 uk(x) then sn : [a, b]→ R we will say that
the series

∑
un converges pointwise if {sn} pointwise converges.

2.1 Theorems

Theorem 3 (Dini). un : [a, b] → R be continuous and non-negative. and we will assume that f
p→∑∞

n=1 un. f is continuous then the convergence is uniform.

Theorem 4 (Weierstrauss M-test). if we have a un : I → R I is a segment and we will assume that we
have a sequence of numbers Mn such that

1.
Mn ≥

∣∣un(x)
∣∣ For all x ∈ I

2.
∞∑
n=1

Mn <∞ Then


N∑
n=1

un

 Uniformly converges

From the limit switching theorem We get that if un : I → R is a series of functions that uniformly
converges in I. If a ∈ Ī and we will assume that for all n, limx→a un(x) = cn and

∑
cn <∞ then

lim
x→a

∞∑
n=1

un(x) =
∞∑
n=1

cn

Corollary 1. if un are continuous then
∑
un is continuous.

Theorem 5 (Limit Switching). if we have a g, fn : [1, b]→ R such that f ∈ C−1 we will also assume that

1. there exists a x0 ∈ [a, b] such that {fn(x0)} converges.

2. f ′n
u→ g

Then there exists f : [a, b]→ R such that fn
u→ f and f ′ = g or in other words, f ′n

u→ f ′
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2.1.1 Problems

• Prove that

lim
x→∞

∞∑
n=1

x2

1 + n2x2
=

1

π

Solution: We will notice that for all x ∈ R

un(x) =
x2

1 + x2 · n2
=

1
1
x2

+ n2
<

1

n2

If the inequality above would only happen for x > x0 it would still be OK, for this question, it
would be sufficient that we would have uniform convergence in the segment [x0,∞) for x ∈ R.

We will choose Mn = 1
n then from the M-test

∑
un uniformly converges. From the uniform conver-

gence we can use the lmit switching theorem since

–
∑
un uniformly converges in R.

– 1
n2 = cn = limx→∞ un(x) and as we know, ∞ > 1

n2

Therefore from the limit switching theorem we can do:

lim
x→∞

∞∑
n=1

un(x) =

∞∑
n=1

lim
x→∞

un(x) =

∞∑
n=1

1

n2
From Calc 1

=
π2
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• If R > 1 does the series
∑∞

n=1
(−1)n
x+n uniformly converge in [1, R] (Does the series converge in every

subsection of [1,∞)?

Notice that for all n

un(x) =
(−1)n

x+ n
∈ C1

and

u′n(x)− (−1)n+1

(x+ n)2
⇒
∣∣u′n(x)

∣∣ ≤ 1

(n+ x)2
<

1

n2

from the M-test we get that the derivative uniformly converges in [1, R] for all R > 0 and from
Leibniz we get that the series

∑
un(x) converges pointwise.

Note 1. It is sufficient to check if
∑
un is a convergent series.

From the derivative theorem we get that the series
∑
un uniformly converges in [1, R]

Leibniz:
an ≥ 0 Monotonic decreasing ⇒

∑
(−1)nan Converges.
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Theorem 6. Let g, fn : [a, b]→ R be functions so that fn ∈ C1 and we will also assume that

1. There exists an x0 ∈ [a, b] so that {fn(x0)} converges/

2. f ′n → g

then there exists an f : [a, b]→ R so that fn
u→ g, f ′ = g or in other words f ′n

u→ f ′.

In another way, gn = f ′n, gn is continuous ⇒ gn ∈ R[a, b]. gn
u→ g and from (2)⇒ g ∈ R[a, b]. we

will define f(x) =
∫ b
a g(x)αx(+c)

2.2 Problem

1. Prove that for all m,n ≥ 0 ∫ 1

0
xn · lnm xdx =

(−1)m ·m!

(n+ 1)m+1

2. Prove that ∫ 1

0
x−xdx =

∞∑
n=1

n−n

3. Prove that the following function is a continuous function

∞∑
n=2

ln

(
1 +

x2

n2 ln2 n

)

4. Prove that the function
∑∞

n=1 n
2x2e−n

2x uniformly converges in [0,∞]

Hint: notice that

x−x = e−x lnx =
∑ (−1)n

n!
· xn lnm x

1.

Imin
Int’ by parts

=
xn+1

n+ 1
· lnm x|10 −

m

n+ 1

∫ 1

0
xn lnm−1 xdx =

−m
n+ 1

· Im−1, n

In total:

Im,n =
(−1)m ·m!

(n+ 1)m
· I0,n, I0,n =

1

n+ 1

2. We will define the sequence of functions

un(x) =
(−1)n

n!
xn lnn x ∈ C1[0, 1]

. We will differentiate xn lnn x and find max[0,1] x
n lnn x (H.W. for all n the maximum is at the

point 1
e ).
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Differentiation idea: if gn = fn − f , gn is diferentiable, then:

max [a, b]|gn| ≤ max

{∣∣gn(a)
∣∣ ,∣∣gn(b)

∣∣ , max
x is an extremum

∣∣gn(x)
∣∣}

The goal: to find Mn in order to use in the M-test.
We will find max[a,b]

∣∣un(x)
∣∣ using the same trick and mark it with MN¿

For every n we will define Mn =
1
en

n! = 1
nen and because ∞ >

∑
Mn we get from the M-test that

the series uniformly converges. We will use the theorem on integration in the compact space [0, 1].
un ∈ C1 and in particular un ∈ R[0, 1] and therefore

∑
un ∈ R[0, 1] and∫ 1

0

∑
un =

∑∫ 1

0
un

and from the first section we have for all n: I0,n = (−1)n·n!
(n+1)n−1∫ 1

0
un(x) =

∫
(−1)n

n!
· xn lnn xdx =

(−1)n

n!
· In,n =

(−1)n

n!
· (−1)n · n!

(n+ 1)n+1
=

1

(n+ 1)n+1

From ? we have∫ 1

0
x−xdx

Hint
=

∫ 1

0

∞∑
n=0

(−1)n

n!
xn lnn xdx =

∞∑
n=0

(−1)n

n!

∫ 1

0
xn lnn xdx =

∞∑
n=0

1

(n+ 1)n+1
=

∞∑
n=1

n−n

3. Idea: It is sufficient to show that the series uniformly converges since we can switch limits (ln
(

1 + x2

n2 ln2 n

)
is continuous). However there is no uniform convergence. we will take xn = n lnn and we will get
un(xn) = ln2 But continuity is local Then it is sufficient to prove uniform continuity in a compact
space.

We will set α > 0 and look at the segment [−α, α]. we will mark un(x) = ln
(

1 + x2

n2 ln2 n

)
∣∣un(x)

∣∣ = ln

(
1 +

x2

n2 ln2 n

)
ln(1+x)≤x
≤ 1 +

x2

n2 ln2 n

x∈[−α,α]
≤ α2

n2 ln2 n

We will mark Mn(α) = α2

n2 ln2 n

∀n
∣∣un(x)

∣∣ ≤Mn(α)∀x ∈ [−α, α] ∀α ∈
∑∞

n=1
Mn(α) <∞

And from the M-test we will get that {
∑
un} uniformly converges in [−α, α]

Let x0 ∈ R and we will set α = |x0| + 1 and in particular x0 ∈ [−α, α] and now
∑
un is uniformly

convergent in hte segment [−α, α]and in particular the limit function is continious(since un is con-
tinuous for all n.we will get that

∑
un(x) is continuous at the point x0 since x0 is a general point

we have that
∑
un(x) is continuous.

4. We will mark un(x) = n2x2e−n
2x and therefore:

u′n(x) = 2xn2e−n
2x − n4x2e−n2x = e−n

2x · xn2(2− n2x) = 0⇔ x = 0

xn =
2

n2
∣∣un(x)

∣∣ ≤ max
{∣∣un(0)

∣∣ ,∣∣un(xn)
∣∣}
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Note: If x > xnthen un(x) < 0 ans then un decreases in the section (xn,∞) and in particular

lim
x→∞

un(x) ≤ un(xn)

We will choose Mn := e−2 · 4
n2 then for all n max[0,∞]

∣∣un(x)
∣∣ ≤Mn and of course,

∑
Mn <∞, from

the M-test the series convegres in (0,∞)

When We are asked to prove a local property (differentiable/continuous, in R[a, b]...) we will
show uniform continuity in the segemnt [−α, α] for all α and get the required property.

3 Infinite Products

Definition 1. Let {an} be a series of numbers and we will define Pn =
∏n
k=1 ak We will say that

∏∞
k=1 ak

converges if the sequence {pn} is a convergent sequence to a value P 6= 0. If P → 0 then we will say that
the product diverges to 0.

Claim 1. 1.
∏n
k=1 ak converges ⇒ an → 1

2. if an > 0 then
∏∞
n=1 an converges ⇔∞ >

∑
ln(an)

3. If an ≥ 0 then the product
∏∞
n=1 an converges iff the series

∑
(an − 1) converges.

Proof. 1. We will notice that -

an =
pn
pn−1

→ p

p
= 1

2. And since

ln

 ∞∏
n=1

an

 =

n∑
k=1

ln(ak)

∞∏
n=1

an = eln(
∏∞
n=1 an) = e

∑n
k=1 ln ak

since ex · x is a monotonic injective function...

3. We will mark cn = an − 1 an = 1 + cn
an > 0 from (2) ∏

an is convergent ⇔
∑

ln(an) <∞

ln(an) = ln(1 + cn)

x≥0

ln(1+x)≤x
≤ Cn

If an ≥ 1 then we have shown here that
∑

ln(an) converges if the series
∑
cn converges (from the

comparison test).
The series

∑
ln(an) converges ⇔

∏
an converges.

We have shown that for an ≥ 1 we have
∑

(ak − 1) <∞⇒
∏
an <∞

for all c1, c2, ..., cn ∈ R positive numbers,

1 +
n∑
k=1

ck ≤
n∏
k=1

(ck + 1)
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Hint: proof by induction. We will define as before, ck = ak − 1

1 +
n∑
k=1

ck ≤
n∏
k=1

(ck + 1) =
n∏
k=1

ak

We will get that
∏∞
k=1 ak converges ⇒ the series

∑
(an − 1) converges.

A useful inequality: from the Taylor expansion of ex we can get the for all x ≥ 0 ex ≥ x + 1 and
therefore

N∏
n+1

an =
N∏
n=1

(1 + cn) ≤
N∏
n=1

ecn = e
∑N
n=1 cn

and therefore if the series converges then the product converges.

3.1 Problem

Calculate
∏∞
n=1 cos

(
α
2n

)
for α 6= 0 Reminder: sinx = 2 sin(x2 ) cos(x2 )

sinα = 2 cos(
α

2
) · sin(

α

2
) = 4 cos(

α

2
) · cos(

α

4
) sin(

α

4
) = ... =

2n
n∏
k=1

cos

(
α

2k

) sin(
α

2n
) =

pn︷ ︸︸ ︷
n∏
k=1

cos(
α

2n
) ·

sin( α2n )
α
2n

· α⇒ Pn =
sinα · ( 1

α)
sin(α

2
)

α
2n

−−−→
n→∞

sinα

α

3.2 Questions from tests

1. Prove that ∫ ∞
−∞

dx

(1 + x2

n )n
→n→∞

∫ ∞
−∞

e−x
2
dx

fn(x) =
1

(1 + x2

n )n
fn(x)

p→ e−x
2

we will want to show that fn
u→ e−x

2
+ find a Majorant.

H.W.: fn ↘ f because
(

1 + 1
n

)n
↗ e and because

(1 +
x2

n

)n 1
n+1

≤ 1 +
x2

n+ 1
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Now from Dini: fn ∈ c1, and {fn} is a monotonic sequence. f the limit function is also continuous
from Dini’s theorem fn

u→ f
On the other hand, because {fn} is a monotic sequence and in particular |f | ≤ f1, |fn| ≤ f1 in
order to finish the proof we only need to show that

∫∞
−∞ f1 converges.∫ ∞

−∞
f1 =

∫ ∞
−∞

1

1 + x2
dx = 2

∫ ∞
0

1

1 + x2
dx = 2 lim

R→∞
arctan |R0 = π

and in particular we have found a majorant.

2. If we have
fn : [0, 1]→ R ∈ C1[0, 1] ∀n ∈ N sup

x∈[0,1]

∣∣f ′n(x)
∣∣ ≤ 1 fn

p→ f

Prove that fn
u→ f

Solution: From the homework. we know that f is a Lipschitz function (fn is Lipschitz with a
constant of c).
Let ε > 0. we will show that there exists an N such that for all n > N we have sup[0,1]|fn − f | < ε.
For δ = ε

6 for all x, y ∈ [0, 1] |x− y| = δ∣∣f(x)− f(y)
∣∣ ≤|x− y| < ε

6∣∣fn(x)− fn(y)
∣∣ ≤|x− y| < ε

6

Compact: For each sequence of sets In := (xn − δn, xn + δn) if K ⊆ ∪In then there exists an
{nj}Nj=1 such that K ⊆ ∪Nj=1Inj

Ix := (x− ε

12
, x+

3

12
) ∪Nn=1 Ix ⊇ [0, 1]

x∈Ixj∣∣fn(x)− f(x)
∣∣ ≤

ε
6︷ ︸︸ ︷∣∣fn(x)− fn(xj)

∣∣+
ε
6︷ ︸︸ ︷∣∣f(xj)− f(x)

∣∣+
ε
6︷ ︸︸ ︷∣∣fn(xj)− f(xj)

∣∣
Formally:

xj = j − ε

6

∣∣xj − xj+1

∣∣ =
ε

6

∀x ∈ [0, 1]∃j
∣∣x− xj∣∣ < ε

6

N = 10
ε then xN = 10

ε ·
ε
6 > 1 and in particular a finite number of points such that the sections cover

[0, 1].
For all 1 ≤ j ≤ N from point wise convergence there exists an Nj such that for all n > Nj ,∣∣fn(xj)− f(xj)

∣∣ < ε
3 we will choose M = max1≤j≤N Nj < ∞ for all n > M we have that for any

x ∈ [0, 1]

∣∣fn(x)− f(x)
∣∣ ≤ x∈Ixj∣∣fn(x)− f(x)

∣∣ ≤ ∣∣fn(x)− fn(xj)
∣∣+
∣∣f(xj)− f(x)

∣∣+
∣∣fn(xj)− f(xj)

∣∣ = I1 + I2 + I3
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