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1 Pointwise Convergence

fn : I → R we will say that fn converges pointwise to f at point x if {fn(x)} → f(x) we can say that fn
converges pointwise to f in the segment I if for all x ∈ I fn(x)→ f(x)

1.1 examples

1.
fn : R→ R fn(x) =

x

n

We will fix x and then we have that fn(x) → 0 which means that for all x we have point wise
convergence to 0.

fn(x) = xn fn : R→ R fn → f(0, 1] f(x) =

{
0 |x| < 1

1 x = 1

2.

fn : R→ R fn(x) = (2 cosx)−n =
1

2 cosx)n

And then from the example fn(x)→ 0 1
2 cosx = 1 then fn(x)→ 1 for x ∈ {±π

3 + 2πk, k ∈ Z} Here,
we saw that at some point we had that fn(x) = 1 and we have a function of the type tn therefore
there is a point where x converges to 1. If we look at the function of cosx we see that it equals to 1

2
at π

3 , we ill proceed to divide the function into sections where it converges. For all of the following,
fn(x)→ 0:

• x ∈ {(−π
3 ,

π
3 ) + 2πk, k ∈ Z}

• x ∈ {(2π
3 ,

4π
3 ) + 2πk, k ∈ Z}

• x ∈ {(−4π
3 ,

2π
3 + 2πk, k ∈ Z}

3.

fn : [0, 1]→ R fn(x) =


x x < 1

n
2
n − x

1
n < x < 2

n

0 else

there exists an N such that for all n > N x > 2
n ⇒ fn(x) = 0 therefore for all x ∈ (0, 1] x = 0 :

fn(x) = 0 and in particularfn
p→ 0 we will check uniform convergence:

sup
[0,1]
|fn − f | = sup

[0,1]
|fn| =

1

n
→n→∞ 0

which means that fn ⇒ 0
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4. fn : [0, 1] → R in a similar fashion to the previous example, we have pointwise convergence to the
function 0. However sup[0,1]|fn − f | = 1 6→ ans in particular we do not have uniform convergence.

In a wider sense, then we want to negate uniform convergence we will find a sequence of points {xk}∞k=1

and a sub sequence{nk} such that
∣∣fnk

(xk)− f(xk)
∣∣ < ε0 for all k (ε0 > 0 is a constant, the same one for

all k) for instance, in example 2 nk = k, xk = 1
k

2 Problems

Check the convergence of the following sequences of functions:

1. fn(x) = xn − xn+1 in the section [0, 1]
We have pointwise convergence to f = 0.

gn = fn = xn − xn+1g′n(x) = nxn−1 − (n+ 1)xn = xn−1(n− (n+ 1)x) = 0

Suspicious extremum points, x = 0, xn = n
n+1 ∈ [0, 1]

sup
[0,1]
|fn − f | ≤ max{

∣∣fn(0)
∣∣ ,∣∣fn(xn)

∣∣ ,∣∣fn(1)
∣∣} = max{0,

∣∣fn(xn)
∣∣} =

(
n

n+ 1

)n(
1− n

n+ 1

)
→n→∞ 0

Note: If fn(a, b) → R and limx→a
∣∣fn(x)− f(x)

∣∣ or limx→b ... do not exist, in this case we must
check that: lim supx→a

x→b

∣∣fn(x)− f(x)
∣∣→n→∞ 0

2.

fn : (0, 1)→ R fn(x) =
x2

x2 + (nx− 1)2

We will notice that gn = fn − f is differentiable and we would use that in order to find sup(0,1)|gn|

g′n(x) = f ′n(x) = ... =
2x(1− nx)

x2 + (nx− 1)2)2
= 0⇔ x = 0, xn =

1

n

sup
(0,1)
|fn − f | = sup|fn| ≤ max{

∣∣∣∣fn(
1

n
)

∣∣∣∣ , L− 0, L1}

L0n = lim sup
x→0

∣∣fn(x)
∣∣ L1n = lim sup

x→1

∣∣fn(x)
∣∣

L0n = lim sup
x→0

∣∣fn(x)
∣∣ = lim sup

x→0

x2

x2 + (nx− 1)2
= 0

L1n = ...→ 0

fn(
1

n
) =

1
n2

1
n2 + (n · 1

n − 1)2
= 1

For the sequence xn = 1
n we will get that

sup
(0,1)

∣∣fn(x)− f(x)
∣∣ ≥ ∣∣fn(xn)− f(xn)

∣∣ = 1

and in particular we do not have uniform continuity.
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3 Claim

A = {x1, ..., xm} ⊂ R is a finite set then fn
u→ f ⇔ fn

p→ f
⇐ Uniform continuity is always pointwise convergent.
⇒ for all 1 ≤ j ≤ m fn(xj) → f(xj) from pointwise convergence, if we take ε > 0 for each j there exists
an Nj such that for all n > Nj ε >

∣∣fn(xj)− f(xj)
∣∣ Now we will choose N0 = max1≤j≤mNj , then for all

n > N0

sup
x∈A

∣∣fn(x)− f(x)
∣∣ = max

1≤j≤m

∣∣fn(xj)− f(xj)
∣∣ < ε

where the last inequality comes from the pointwise convergence and therefore we have uniform conver-
gence.

A finite number of points does not affect uniform convergence ( if there is pointwise convergence).

4 Definition

if we have a set of functions F which are all defined on the set A (∀f ∈ F , f : A→ R) we can say that F
is uniformly bounded if there exists an M such that sup

a∈A
f∈F

∣∣f(a)
∣∣ ≤M or in other words,

∀a ∈ A, ∀f ∈ F .
∣∣f(a)

∣∣ ≤M
4.1 Problems

Given fn : A→ R, A ⊂ R is a segment such that fn
u→ f .

1. Prove that if {fn} is bounded uniformly by M then f is bounded by M

Proof we will show that for all ε > 0, supA
∣∣f(X)

∣∣ < M + ε and therefore f is bounded by M . We
will set ε > 0 there exists an N such that for all n > N supA|fn − f | from uniform continuity and
in particular for all x ∈ A

∣∣f(x)
∣∣ ≤ <ε∣∣f(x)− fn(x)

∣∣+
<M

fn(x) < M + ε

and because this is true for all x ∈ A we ahve supA|f | < M + ε

2. Prove that if supA|f | ≤ M0 then there exists an N such that F = {fn}∞n=N is uniformly bounded
(is uniform convergence necessary here?)

How should we approach this problem?∣∣fn(x)
∣∣ ≤ ∣∣fn(x)− f(x)

∣∣+
∣∣f(x)

∣∣ < M0 + 1

for ε > 1 there exists an N such that for all n ≥ N supA|fn − f | < 1 and therefore for all x ∈ A we
have that in particular supA|fn| < M0 + 1 for all n ≥ N as in F = {fn}∞n=N is uniformly bounded
by M0 + 1.

3. Prove that if fn is bounded ( each one separately) then {fn} is uniformly bounded.
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Proof we will show that the function is bounded and use 2.
For ε = 1 there exists an N0 such that for all n ≥ N0 : supA|fn − f | < 1 and in particular

sup
A

∣∣fn(x)
∣∣ ≤ sup

A

∣∣∣∣∣f(x)−
<0

f0(x)

∣∣∣∣∣+ sup
A

∣∣fN0

∣∣ < MN0 + 1

we will learn that f and now from 2 there exists an N such that F = {fn}∞n=N is uniformly bounded
by MN0 + 2 and we will choose

M = max{MN0 + 2, max
1≤k≤N

Mk + 2}

then for all n if n ≤ N then supA|fn| ≤ Mn ≤ M if n > N then fn ∈ F and in particular
supA|fn| < MN0 + 2 ≤M in total we get uniform boundedness.

5 Claim

If fn
u→ f gn

u→ g then fn + gn
u→ f + g

proof if ε > 0 there exists an N such that for all n > N supA|fn − f | < ε
2 and supA|gn − g| < ε

2 therefore
for all n > N :

sup
A

∣∣(fn + gn)− (f + g)
∣∣ ≤ sup

A
|fn − f |+ sup

A
|gn − g| <

ε

2
+
ε

2
= ε

therefore supA
∣∣(fn + gn)− (f + g)

∣∣→n→∞ 0 Something to think about what happens when fn ·gn → f ·g
do we need more information?

5.1 example

if we have a > 0 and f = f0 which is Riemann integrable in the section [0, a] we will mark the sequence
of functions

fn(x) =

∫ x

0
fn−1(t)dt

Show that {fn} converges uniformly.

f is Riemann integrable which implies boundedness. We will mark this boundary with M .∣∣f1(x)
∣∣ ≤ ∫ x

0

∣∣f0(t)
∣∣ dt < M · x

∣∣f2(x)
∣∣ ≤ ∫ x

0

∣∣f1(t)
∣∣ dt < ∫ x

0
Mtdt =

M · x2

2

by induction, we can show that
∣∣fn(x)

∣∣ ≤M · xnn! and from this we get that fn
p→ 0 because for all x ∈ Rwe

have that xn

n! → 0 and fn ⇒ 0 because

sup
[0,a]
|fn −F| = sup

[0,a]
|fn| ≤M

an

n!
→ 0

and by definition we get uniform continuity.

Note that if we take fn : R+ → R then fn
p→ 0, what about uniform convergence?
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6 Claim

if we take fn : [a, b]→ R such that fn
p→ f in [a, b] and fn

u→ f in (a, b) then fn ⇒ f in [a, b]

Proof We will set ε > 0.

1. fn
u→ f in (a, b)⇒ there exists N1 such that for all n > N1 sup[a,b]|fn − f | < ε

2. fn(b)
p→ f(b) therefore there exists N2 such that for all n > N2

∣∣fn(b)− f(b)
∣∣ < ε

3. The same for a,N3

We will choose N = max{N1, N2, N3} then for all n > N :

sup
[a,b]
|fn − f | = max{

∣∣fn(a)− f(a)
∣∣ ,∣∣fn(b)− f(b)

∣∣ , sup
[a,b]

∣∣fn(x)− f(x)
∣∣} < ε

6.1 Example

g ∈ C([0, 1]), g(1) = 0 we will define fn(x) = xn · g(x) from that {fn} is uniformly convergent in [0.1]

Proof:for all x ∈ [0, 1) we have fn(x)→n→∞ 0 and fn(1) = 0 thereforefn
p→ f ⇒ f = 0

1. First way Let ε > 0

It is easy to see that for all q < 1 the sequence {xn} is uniformly convergent in the segment
[0, q] and we will notice that for bn ↗ b, an ↘ a it is possible that {fk} is uniformly convergent
for [an, bn] but not in (a, b)
Will {xn · g(x)} uniformly converge in [0, q]?

(a) There exists a δ > 0 such that for all 1− δ < x < 1,
∣∣g(x)

∣∣ < ε and in particular, for all n,∣∣fn(x)− f(x)
∣∣ =
∣∣f(x)

∣∣ = |x|n ·
∣∣g(x)

∣∣ < |x|n · ε < ε

(b) g ∈ C[0, 1] therefore g is bounded by M :

∣∣fn(x)
∣∣ < |x|n ·M ∀x∈[0,1−δ]

≤ (1− δ)n ·M

We will choose an N such that for all n > N, (1− δ)n ·M < ε then for all n > N

sup
[0,1]

∣∣fn(x)− f(x)
∣∣ = max{ sup

[0,1−δ]
fn(x), sup

[1−δ,1]
fn(x)}

(2)
< ε

Note. It is necessary to define g(1) = 0 or else we would have that g ≡ 1 which is a contradiction
to the fact that

2. Second way

Dini Theorem: If we have fn : [a, b]→ R which is a decending sequence(fn−1 > fn),

fn
p→ f and both fn and f are continuous. Then fn

u→ f .
Note that is is sufficient that for all points, {fn(x)} is monotonic.
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(a) g is continuous ⇒ fn is continuous.

(b) f ≡ 0 is continuous.

(c) For all x:
fn+1(x) = xn+1, g(x) = x · xn, g(x) = x · fn(x)

fn(x) > 0 or 0 > fn(x) for all n, it depends on g.

We will assume WLOG 0 < g(x) fn+1(x) = x · fN (x)
fn(x)>0,x<1

< fn(x)⇒ {fn(x)} is monotonously
descending. From the Theorem, we can learn that the convergence is uniform.

7 Switching Limits

1.
∀n. lim

x→x0
fn(x) = an an → a

?⇒ lim
x→x0

f(x) = a fn
p→ f

lim
x→x0

f(x) = lim
x→x0

lim
n→∞

fn(x)
?
= lim

n→∞
lim
x→x0

fn(x) = lim
n→∞

an = a

In general this is not true!, for example:

xn = fn(x) f(x) =

{
0 x < 1

1 x = 1

lim
x→1

f(x) = 0 lim
n→∞

lim
x→1

fn(x) = limn→∞1 = 1

If there is uniform convergence then we can (Homework)

2. ∫ b

a
f = lim

λ(Π)→0
Σ(f,Π, t̃) = lim

λ(Π)→0
Σ( lim

n→∞
fn,Π, t̃)

?
= lim

n→∞
lim

λ(Π)→0
Σ(fn,Π, t̃)

Allowed only if there is uniform convergence)

8 Question from a test 2014

fn : [0, 1]→ [0, 1] are convergent and fn
u→ f

Prove that:
1

n

∞∑
k=1

fk
u→ f

In Calculus 1 we saw that

{an}, an → a⇒ 1

n

∞∑
k=1

ak → a

Proof an → a⇒ there exists an N such that for all n > N : |an − a| < ε WLOG a = 0∣∣∣∣∣∣ 1n
n∑
k=1

ak

∣∣∣∣∣∣ ≤ 1

n

N∑
k=1

ak +
1

n

n∑
k=N+1

|ak| <
M

n
+

1

n
(n−N) · ε

for n>>N
< ε
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Prooffn
u→ f there exists an N such that for all n > N

sup
[0,1]
|fn − f | < ε

WLOG assume f ≡ 0. {fn} are continuous therefore for all n ther eexists

Mn = max
[0,1]
|fn| M := max

1≤n≤N
Mn

(?) For all 1 ≤ n ≤ Nwe have that max
[0,1]
|fn| ≤M

sup
[0,1]

∣∣∣∣∣∣ 1n
n∑
k=1

fk(x)− f

∣∣∣∣∣∣ f≡0
≤ 1

n

sup
[0,1]

N∑
k=1

∣∣fk(x)
∣∣+ sup

[0,1]

n∑
k=N+1

∣∣fk(x)
∣∣ < 1

n
[M + (n−N) · ε]

For a large n
< ε
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