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1 The indefinite integral

1.1 So what did we learn?∫ b
a f where −∞ < a < b <∞ and f is bounded.

Expansion

1. the segment is not infinite (e.g. [0,∞))

2. f is unbounded.

Notes:

1. If f ∈ R[a, b] then
∫ b
a f(t)dt = lims→b−

∫ s
s f(t)dt

2. If the problematic point x0 ∈ (a, b) then we will check
∫ b
a f =

∫ x0
a f +

∫ b
x0
f and they only converge

if f converges.

3. and if we are careful with ways of integration, then life is good!

1.2 Examples

1. ∫ ∞
0

1

1 + x2
= lim

b→∞

∫ b

0

1

1 + x2
dx = lim

b→∞
arctan |b0 = lim arctan b =

π

2∫ ∞
−∞

1

1 + x2
dx =

∫ 0

−∞
...+

∫ ∞
0

= π

2. ∫ ∞
−∞

2xdx

1 + x2
=

∫ ∞
0

dt

1 + t
= ln t|∞0

Which doesn’t converge!!∫ ∞
−∞

2xdx

1 + x2
=

∫ 0

−∞
+

∫ ∞
0

2xdx

1 + x2
= lim

R1→∞

∫ R1

0

2xdx

1 + x2
+ lim
R2→∞

∫ 0

−R2

2xdx

1 + x2

3. ∫ ∞
0

e−xdx = ”− e−x|∞0 = lim
b→∞

F (b)− F (0) = 1

4. ∫ 1

0

log x

x
dx = [t = log x, x = et, dx = etdt, x = 0→ t = −∞, x = 1→ t = 0] =

∫ 0

−∞

t

��et
��e
tdt = (

t2

2
|0−∞

which diverges!
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1.3 Cauchy Theorem

−∞ < a < b ≤ ∞ and f ∈ R[a, t] for all t < b then
∫ b
a converges iff

∀ε > 0.∃B < b.∀B < b1 < b2 < b

∣∣∣∣∣
∫ b2

b1

f

∣∣∣∣∣ < ε

f is continuous, non-negative so that
∫∞

0 f converges. Find the limit limn→∞
∫ 1

0 f(nx)dx∫ 1

0
f(nx)dx = [t = nx, dx =

dt

n
, x = 0→ t = 0, x = 1→ t = n] =

∫ n

0
f(t) · dt

n

If we mark an =
∫ n

0 f(t)dt then because
∫∞

0 f converges then {an} is a convergent sequence and in
particular is bounded.

lim
n→∞

∫ 1

0
f(nx) = lim

n→∞

∫ n

0
f(t)dt = lim

n→∞

1

n
· an = 0

2 Convergence Tests

2.1 For keeping functions

1. F =
∫ x

0 f, f ≥ 0 F does not rise and if F is bounded then
∫∞

0 f converges.

2. Comparison test. Given 0 ≤ g ≤ f then:

(a) if
∫
g is divergent ⇒

∫
f is divergent.

(b) if
∫
f is convergent ⇒

∫
g is convergent.

3. the limit comparison test. Given f, g non-negative and lets assume that x0 is a problematic point
for both of them. if the limit limx→x0

g(x)
f(x) = L exists then L ∈ (0,∞) then

∫
f,
∫
g converge and

diverge together.

• L = 0⇒ f > g from a certain point.

• L =∞⇒ g > f from a certain point.

and we return to a normal comparison test.

4. Anchor function.

• if a > 0 we will compare with
∫∞
a

dx
xp . p > 1 converges. p ≤ 1 diverges.

• integrals of the type
∫ b

0
dx
xp (b > 0) converges if p < 1. diverges if p ≥ 1.

2.2 Example problems

Check if the following integrals converge:

1.
∫∞

0
x2dx

x4−x2+1
suspicious points: The only suspicious point is ∞. Divide and conquer - division of

suspicious points of the function we are checking. it is no less important to make sure that for the
function we are comparing in the range of which we are integrating there is only one suspicious
point. ∫ ∞

0

x2

x4 − x2 + 1
=

∫ 1

0

x2dx

x4 − x2 + 1
+

∫ ∞
1

x2dx

x4 − x2 + 1
= I1 + I2
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I1 is Riemann integrable and in particular is finite. for I2 we will notice that limx→∞
1
x2

x2

x4−x2+1

and

therefore 1
x2

and x2

x4−x2+1
diverge and converge together! Which means that I2 converges and the

integral converges.

2.
∫ 1

0
dx

(cosx−1)
√

1−x We will notice that 1
(cosx−1)

√
1−x keeps it sign and we may use comparison test.

Suspicious points: the denominator vanishes at 0 and at 1 and therefore these are suspicious points
of ∫ 1

0

dx

(cosx− 1)
√

1− x
=

∫ 1/2

0

dx

(cosx− 1)
√

1− x
+

∫ 1

1/2

dx

(cosx− 1)
√

1− x
= I1 + I2

I2: we will notice that limx→1

1√
1−x
1

(cos x−1)
√

1−x
and the integrals converge and diverge together.

∫ 1

1/2

−1√
1− x

=

∫ 1/2

0

1√
t
dt <∞

I1: we will use a Taylor series, cosx = 1− x2

2 + o(x2)

lim
x→0

−1
x2

1
(cosx−1)

√
1−x

= lim
x→0

−1
x2

1

(−x2
2

+o(x2))·
√

1−x

= lim
x→0

(
1

2
+ o(1)) ·

√
1− x =

1

2
∈ (0,∞)

from the comparison test, we get that I1 converges iff
∫ 1/2
o
−1
x2

and the other diverges and therefore
the integral diverges.

3.
∫∞

0
|sinx|
x dx We will mark: Ik =

∫ π(k+1)
πl

|sinx|
x dx sinx is uniformly continuous and therefore if there

exists a

δ >

∣∣∣∣x− (πk +
π

2
)

∣∣∣∣⇒
∣∣∣∣∣∣∣|sinx| −

=1∣∣∣∣sin(πk +
π

2

∣∣∣∣
∣∣∣∣∣∣∣ <

1

2
⇒|sinx| > 1

2

Ik =

∫ π(k+1)

πl

|sinx|
x

dx = [y = x− πk] =

∫ π

0

|sin y|
y + πk

dy ≥
∫ π

2
+δ

π
2
−δ

|sin y|
y + πk

dy >

≥
∫ π

2
+δ

π
2
−δ

1/2

y + πk
dy >

1

2

∫ π
2

+δ

π
2
−δ

1

π(k + 1)
=

δ

π(k + 1)∫ ∞
0

|sinx|
x

dx =
∞∑
k=0

Ik >
∞∑
k=0

δ

π(k + 1)
= δ ·

∞∑
k=1

1

πk
=∞

2.3 Absolute convergence

Problem: for which values α ≥ 0 the following integral absolutely converges?∫ ∞
1

sinx

xα
dx

We will look at
∫∞

1
|sinx|
xα dx because |sinx| ≤ 1 we get |sinx|xα ≤ 1

xα and therefore if
∫∞

1
1
xα converges, our

integral converges too. For all α > 1
∫∞

1
|sinx|
xα absolutely converges. For α ≤ 1 we will notice that

∀x > 1
|sinx|
xα

≥ |sinx|
x

and therefore from the comparison test and because
∫∞

1
|sinx|
x dx diverges, ours does too.
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Another solution is∫ ∞
1

|sinx|
xα

dx =

√
sin2 x

xα
≥ sin2 x

x
=

1

2
(
1− cos 2x

x
) =

Diverges
1

2x
−

Converges
cos 2x

2x

3 Abel and Dirichlet tests

Theorem: f, g : [a,w)→ R, w ∈ R ∪ {∞} such that:

1. f is monotonous f ∈ C1[a,w)

2. g is continuous.

Then:

• Abel - if f is bounded ∫ w

a
g Converges ⇒

∫ w

a
f · g Converges.

• Dirichlet - limx→w f = 0 and
∫ x
a g = G(x) is a bounded function then

∫ w
a f · g converges.

3.1 Problem from a test

1. Find the type of convergence of ∫ ∞
1

sinx

xα
, α ∈ R

α > 1⇒ absolute convergence. α ≤ 0 then it diverges (problem for home). 0 < α ≤ 1: We have seen
that there is no absolute convergence we will check the normal convergence using Abel-Dirichlet.
Its requirements exist for

f(x) =
1

xα
∈ C1(1,∞), lim

x→∞
f(x) = 0, g(x) = sinx,

Convergent ⇐ Bounded

G(x) = ± cosx

2. Find the convergence of the following function:∫ ∞
0

sin(x2),

∫ ∞
0

sin(x2)dx =

∫ 1

0
sin(x2) +

∫ ∞
1

= I1 + I2

I1 - Riemann, finite.

I2 =

∫ ∞
1

sin(x2)dx = [t = x2,
dt

2
√
t = dx

] =
1

2

∫ ∞
1

sin t√
t
dt

which is not absolutely convergent from the previous function.

3. ∫ ∞
1

sin(x · log x)dx

f(x) = x log x, f ′(x) = log x+ 1 > 1 in the section (1,∞) f is monotonously rising and in particular
is invertible. from a theorem, the inverse function f ′ is differentiable and in particular

(f−1(y))′ =
1

f ′(f−1(y))
→y→∞ 0∫ ∞

1
sin(f(X)) = [y = f(x)] =

∫ ∞
0

sin(y) · (f−1(y))′dy =

∫ ∞
0

sin y

f ′(f−1(y))
dy

2 ≥
∣∣∣∫ a0 sin y

∣∣∣ , 1
f ′(f−1(y))

→ 0 from the diriclet test, the integral converges.
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Another solution ∫ ∞
1

sin(f(x)) =

∫ ∞
1

sin(f(x)) · f
′(x)

f ′(X)

we will mark g(x) =∼ (f(x)f ′(x), h(x) = 1
f ′(x)∫

g(x) = − cos(f(x)) which is bounded! limx→∞
1

f ′(x) = 0 which is mono’ from the dirichlet test,
we get that the integral is bounded!

4 The integral test

f : [1,∞)→ R goes down, f ≥ 0 and we will assume for all f ∈ R[1, b] then the indefinite integral
∫∞

1 f
and the series

∑∞
n=1 f(n) converge and diverge together.

4.1 Examples

1.
∫∞
b

dx
x ln lnx , f(x) = 1

x ln lnx f keeps the requirements(monotonous) and we know from the cauchy
condensation test that the series

∑ 1
x ln lnx is a divergent series. therefore the integral is divergent.

2. Does the following sum converge or diverge?

∞∑
n=1

1

nα

∫ ∞
1

1

xα
α 6=1
=

x1−α

1− α
|∞1 = ... =

{
converges α > 1

diverges α < 1

Why can we begin from m > 1 when using the integral test? f is monotonous ⇒ in every
segment [1,m] whcih is Riemann integrable

∫ ∞
1

=

finite∫ m

1
f +

check∫ ∞
m

f

which means the for every series, only the tail is interesting. Therefore you can start from m > 1.
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