Instructor: Asaf Shapira

Due Date: 28/05/13

Please submit organized and well written solutions!

Problem 1. Prove that the number of surjective (i.e. onto) mappings from [n] to [k] is given by $\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$. Use this to deduce that:

- $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{n} = n!$.
- $\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n} = 0$ when k > n.
- $S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i {k \choose i} (k-i)^n$, where S(n,k) are the Stirling numbers of the second kind.

Problem 2. Consider the number of ways of coloring the integers $\{1, ..., 2n\}$ using the colors red/blue in such a way that if i is colored red then so is i-1. Deduce the identity

$$\sum_{k=0}^{n} (-1)^k \binom{2n-k}{k} 2^{2n-2k} = 2n+1$$

Problem 3. Let $\varphi(n)$ denote the Euler totient function.

- 1. Show that if m, n are coprime then $\varphi(mn) = \varphi(m)\varphi(n)$ (you can use the formula for $\varphi(n)$).
- 2. Derive the formula of $\varphi(n)$ from the assumption that $\varphi(mn) = \varphi(m)\varphi(n)$ for coprime m, n.
- 3. Use item (1) to prove that $\sum_{d|n} \varphi(d) = n$.

Problem 4. Let A_1, \ldots, A_n be a family of n sets. Show that

$$|\bigcup_{i=1}^{n} A_i| \ge \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

and

$$|\bigcup_{i=1}^{n} A_i| \le \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$